1.3.1 Понятие об импульсных сау
Импульсная САУ отличается от непрерывной наличием импульсного элемента (ИЭ), осуществляющего квантование сигнала по времени. Простейшая модель импульсной САУ с
Рисунок 1.3 квантованием сигнала ошибки управления изображена на рис.1.5 в виде обобщенной функциональной схемы. Часто ИЭ изображают в виде некоторого ключа. Период замыкания ключа Т принимают равным периоду квантования сигнала ошибки в реальной системе. При этом ИЭ идеализируют и считают, что замыкание и размыкание ключа происходит мгновенно. Соответственно ИЭ преобразует непрерывный входной сигнал x(t) в последовательность модулированных импульсов (рис.1.6).
Рисунок 1.4 Поэтому ИЭ рассматривают как модулятор импульсов, осуществляющий модуляцию какого-либо параметра периодически повторяющихся импульсов по закону изменения входного непрерывного сигнала, называемого модулирующим сигналом.
Рисунок 1.5
Основными параметрами последовательности импульсов являются амплитуда (высота) А, длительность (ширина)tи ,период повторения Т и временной сдвиг (фаза) . В зависимости от того, какой из параметров изменяется в соответствии с изменением модулирующего сигнала х(t), различают: амплитудно-импульсную (АИМ, рис.1.6), широтно-имульсную (ШИМ, рис. 1.7) и время-импульсную (ВИМ) модуляцию. Последнюю, в свою очередь, подразделяют на фазо-импульсную (ФИМ) и частотно-импульсную (ЧИМ) модуляцию.
Все названные виды модуляции сигналов используют в технике автоматического регулирования. Технические устройства, осуществляющие эти преобразования, называют соответственно амплитудно-импульсными преобразователями, широтно-импульсными преобразователями и т.д. Для математического моделирования этих устройств разработаны типовые модели. Математическую модель амплитудно-импульсного преобразователя обычно называют АИ-модулятором.
Рисунок 1.6 АИ-модулятор состоит из последовательно соединенных
и деального ИЭ и формирователя импульсов (ФИ) (рис. 1.8). ИЭ осуществляет квантование входного сигнала х(t) по времени. Выходной сигнал ИЭ уи(t) представляет собой последовательность -функций, промодулированных дискретными значениями сигнала х(t). ФИ преобразует промодулированные -импульсы в импульсы заданной формы. Если формируются импульсы прямоугольной
формы (длительности tи) передаточная функция ФИ имеет вид
Рисунок 1.7 .
Если tи <<Т, то и.
Если tи=T, то .
Такой формирователь называют фиксатором нулевого порядка. Он преобразует импульсный сигнал в ступенчатый (рис. 1.9). Фиксатор «растягивает» мгновенный входной импульс уи(t) на период следования импульсов Т или «запоминает» площадь мгновенного входного импульса. Таким образом, простейший АИ –модулятор преобразует любой непрерывный входной сигнал х(t) в последовательность прямоугольных импульсов, которая на рисунке 1.9 изображена ступенчатой линей уф(t).
Рисунок 1.8
Рисунок 1.9
- 1 Линейные дискретные модели систем управления
- 1.3.2.6 Передаточные функции разомкнутых и замкнутых импульсных
- 2 Нелинейные модели систем управления
- 2.1 Анализ равновесных режимов
- 2.1.1 Основные понятия
- 2.1.2 Структура обобщённой нелинейной сау
- 3 Линейные стохастические модели сау
- 4 Оптимальные сау
- 1 Линейные дискретные модели систем управления
- Основные понятия о дискретных сау
- 1.2 Классификация дискретных сау
- 1.3 Импульсные сау
- 1.3.1 Понятие об импульсных сау
- 1.3.2 Основной математический аппарат теории дискретных сау
- 1.3.2.1 Структурная схема сау с аим
- 1.3.2.2 Понятие о решетчатой функции
- 1.3.2.3 Понятие о разностных уравнениях
- 1.3.2.4 Дискретное преобразование Лапласа (d-преобразование)
- 1.3.2.6 Передаточные функции разомкнутых и замкнутых импульсных сау
- Построение переходной характеристики импульсной сау
- Понятие о частотных характеристиках импульсных сау
- 1.3.2.9 Теорема Котельникова-Шеннона
- 1.3.3 Анализ устойчивости импульсных сау с аим
- 1.3.3.1 Общие сведения
- 1.3.3.2 Алгебраический критерий устойчивости (аналог критерия Гурвица)
- 1.3.3.3 Алгебраический критерий Шур-Кона
- 1.3.4 Аналог критерия Михайлова
- 1.3.5 Аналог критерия Найквиста
- 1.5 Линеаризованные цифровые сау
- 1.5.1 Общие сведения
- 1.5.2 Обобщенная структурная схема цифровой сау
- 1.5.3 Передаточные функции элементов цифровой сау
- 1.5.3.1 Передаточная функция ацп
- 1.5.3.2 Передаточная функция цвм
- 1.5.3.3 Передаточная функция цап
- 1.5.3.4 Структурная схема линеаризованной цас
- 1.5.4 Оценка устойчивости и качества линеаризованной цас
- 1.5.5 Синтез цас
- 2 Нелинейные модели систем управления
- 2.1 Анализ равновесных режимов
- 2.1.1 Основные понятия
- 2.1.2 Структура обобщённой нелинейной сау
- 2.1.3 Типовые нелинейные характеристики
- 2.2 Методы линеаризации нелинейных моделей
- 2.3 Анализ поведения системы управления на фазовой плоскости ( метод фазовых траекторий )
- 2.3.1 Основные понятия
- 2.3.2 Методы построения фазовых портретов
- 2.3.3 Исследование нелинейных сау на фазовой плоскости
- 2.4 Устойчивость положений равновесия
- 2.4.1 Понятие устойчивости нелинейных систем
- 2.5 Первый и второй методы Ляпунова
- 2.5.1 Первый метод Ляпунова
- 2.5.2 Второй метод Ляпунова
- 2.5.3 Определение функций Ляпунова методом Лурье-Постникова
- 2.6 Частотный метод исследования абсолютной устойчивости
- 2.7 Исследование периодических режимов методом гармонического баланса
- 2.7.1 Сущность метода
- 2.7.2 Определение параметров предельных циклов
- 2.7.3 Устойчивость предельных циклов
- 3 Линейные стохастические модели сау
- 3.1 Модели и характеристики случайных сигналов
- 3.2 Прохождение случайных сигналов через линейные звенья и системы.
- 3.3 Анализ и синтез линейных стохастических систем при стационарных случайных воздействиях.
- 4 Оптимальные сау
- 4.1 Задачи оптимального управления
- 4.2. Критерии оптимальности
- 4.3 Методы теории оптимального управления
- 4.3.1 Общие сведения
- 4.3.2 Классический метод вариационного исчисления
- 4.3.3 Принцип максимума
- 4.3.4 Метод динамического программирования.
- 4.4 Синтез оптимальных сау
- 4.4.1 Классификация оптимальных сау
- 4.6 Робастные сау и адаптивное управление
- 4.6.1 Робастные системы управления
- 4.6.2 Самонастраивающиеся (адаптивные) сау
- 4.6.2.1 Понятие об адаптивных сау
- 4.6.2.2 Виды адаптивных систем управления
- 4.6.2.3 Самонастраивающиеся сау со стабилизацией качества управления
- 4.6.2.4 Самонастраивающиеся сау с оптимизацией качества управления