Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
Особенностью реального управления многими инерционными технологическими процессами, такими как процесс регулирования давления, расхода, уровня, температуры, является апериодичность переходных характеристик.
Увеличение количества емкостей, составляющих регулируемый объект, приводит, очевидно, к соответствующему увеличению порядка дифференциального уравнения, описывающего процесс разгона для регулируемой величины в последней из емкостей при возмущении на входе в объект
Переходный процесс многоемкостного теплового регулируемого объекта за редким исключением описывается дифференциальными уравнениями, характеристические уравнения которых имеют лишь действительные корни. Поэтому процессы разгона в них протекают апериодически, а их кривые разгона являются суммами экспонент (рис. III. 8, кривые 2, 3, 4) и имеют характерную «S-образную» форму. Чем больше составляющих емкостей имеет регулируемый объект при прочих равных условиях, тем более полого идет кривая разгона в начале процесса и тем длительнее его течение (кривые 3 и 4 рис. III. 8). При отсутствии самовыравнивания в регулируемом объекте форма кривых разгона будет несколько иной (рис./III. 9). В этом случае любая из кривых будет уходить в бесконечность, становясь, при достаточном удалении от начала процесса, прямолинейной.
Рис. III. 8. Характеристики разгона многоемкостных объектов при наличии самовыравнивания. Цифры на рисунке соответствуют числу емкостей объекта
Рис. III. 9. Характеристики разгона многоемкостных объектов в отсутствии самовыравнивания. Цифры на рисунке соответствуют числу емкостей объекта
Общий вид экспериментальных переходных кривых таких процессов характеризуется тремя основами параметрами: Т, г, V — постоянной времени, временем отставания и скоростью нарастания соответственно, а простейшей обобщенной моделью является модель.
Если к кривой разгона многоемкостного объекта (рис. III. 12) провести касательную в точке ее перегиба (или в бесконечности в случае отсутствия самовыравнивания рис. III. 13), то эта касательная отсечет на оси времени некоторый отрезок, обозначаемый те и называемый емкостным запаздыванием. Из кривых рис. III. 8, III. 9 легко видеть, что емкостное запаздывание при прочих равных условиях тем больше, чем большее число емкостей составляет регулируемый объект. В точке перегиба (или в бесконечности для объектов, лишенных самовыравнивания) скорость изменения регулируемой величины является наибольшей. Следовательно, в соответствии с определением скорости разгона, данной в § 1 и 3, скорость разгона многоемкостного регулируемого объекта может быть определена по углуа наклона касательной в точке перегиба к кривой разгона.
Конечное отклонение регулируемой величины окопределяется степенью самовыравнивания регулируемого объекта и равна ее обратной величине при единичном ступенчатом возмущении. Таким образом, течение процесса разгона многоемкостного регулируемого объекта, а, следовательно, и его кривая разгона приближенно характеризуются тремя величинами — скоростью разгона е, степенью самовыравнивания q и величиной времени емкостного запаздывания те.
В очень большом числе случаев в тепловых регулируемых объектах имеет место так называемое чистое или транспортное запаздывание т0. Оно обусловливается тем, что с момента нанесения возмущения и до того момента, когда регулируемая величина начнет изменяться, должно пройти некоторое время, затрачиваемое на перемещение регулируемой среды от места нанесения возмущения до места измерения регулируемой величины. Это явление хорошо видно на гидравлической модели одноемкостного объекта с запаздыванием (см. рис. II. 20),
При регулировании уровня воды в баке (рис. II. 20) возмущение в виде изменения подачи воды на стороне притока изменяет подачу воды в открытый желоб, по которому вода и подается в бак. Время запаздывания здесь зависит от длины и наклона желоба.
Рис. II. 20. Конструктивная схема запаздывающего звена
Таким образом, типовая характеристика разгона сложного (многоемкостного) теплового регулируемого объекта имеет характерный вид, изображенный на рис. III. 12 и III. 13. Сумма транспортного и емкостного запаздываний
т0 + те = т (III. 11)
называется полным или условным запаздыванием.
Подводя итоги, мы можем отметить следующие основные особенности сложных тепловых регулируемых объектов:
а) процессы разгона в подавляющем большинстве сложных тепловых регулируемых объектов протекают апериодически и, следовательно, их разгонные характеристики монотонны;
б) колебания, проходя через тепловые регулируемые объекты, отстают по фазе от входных колебаний и уменьшаются по своей амплитуде по мере возрастания их частоты;
в) амплитудно-фазовые характеристики тепловых регулируемых объектов в комплексной плоскости представляют собой спирали, закручивающиеся около начала координат, т. е. около точки, соответствующей бесконечно большой частоте колебаний;
г) тепловые регулируемые объекты являются низкочастотными фильтрами и не пропускают практически колебаний, у которых частота равна или больше некоторой частоты среза соер;
д) подавляющее большинство сложных тепловых объектов обладает кроме емкостного также и транспортным запаздыванием.
Рис. III. 12..Кривая разгона сложного объекта с самовыравниванием / и аппроксимация ее апериодическим звеном с транспортным запаздыванием т, равным сумме емкостного те и действительного транспортного т0 запаздываний.
- Автоматизированные системы управления атомных электростанций
- Структура системы управления.
- Объект управления. Виды используемых объектом ресурсов.
- Этапы цикла управления.
- Определение асу. Системы автоматического и автоматизированного управления.
- Структура и режим работы информационно – поисковой асу.
- Структура и режим работы информационно-советующей асу.
- Классификация асу по различным признакам и их характеристики.
- Характерные признаки асу тп.
- Техническая структура асу тп с управляющей эвм (увм).
- Общая характеристика и классификация основных узлов увм.
- Принципы организации связи увм с технологическим объектом управления.
- Основные режимы работы увм в составе асу тп.
- Особенности аэс как объекта управления.
- Технологические системы аэс, обеспечивающие основной технологический процесс.
- Режимы работы аэс и их характеристики.
- Назначение и цель создания асу тп аэс.
- Стадии и этапы создания асутп аэс.
- Функции асу тп аэс.
- Информационные функции асу тп аэс.
- Управляющие функции асу тп аэс.
- Задачи автоматического управления на аэс.
- Системные функции асу тп аэс.
- Функции управляющих систем асутПобщестанционной части.
- Оперативные пункты управления общестанционного уровня и их функции.
- Функции управляющих систем асутп энергоблока.
- Пункты управления энергоблоком и их функции.
- Классификация подсистем асу тп энергоблока в соответствии с требованиями безопасности и надежности.
- Управляющие и информационные системы асу тп энергоблока.
- Управляющие системы безопасности. Функции суз.
- Управляющие системы безопасности. Функции усбт.
- Назначение, состав и функции скуд ру.
- Назначение и функции сврк.
- Функции и задачи ску ро.
- Функции и задачи ску то.
- Функции ску эч.
- Назначение, состав, функции асрк.
- Назначение и функции системы регистрации важных параметров эксплуатации (срвпэ).
- Назначение, состав, функции, порядок работы системы регистрации аварийных ситуаций типа "Черный ящик".
- Назначение, состав, функции системы дистанционного визуального контроля.
- Информационные потоки общестанционного уровня и уровня энергоблока в асу тп аэс.
- Тенденции создания асу тп аэс.
- Факторы повышения надежности и эффективности систем управления современных аэс.
- Иерархия структуры асу тп аэс.
- Структурная схема асу тп аэс с ввэр – 1000.
- Функции свбу.
- Состав программно-технических средств (птс) свбу.
- Назначение и состав рабочей станции (рс).
- Архитектура асу тп общестанционного уровня.
- Архитектура асу тп энергоблока.
- Архитектура усб.
- Архитектура ску ро, то.
- Назначение, состав, функции программно-технических средств нижнего уровня асу тп.
- Типовые программно-технические средства тптс, общая характеристика, типы модулей.
- Архитектура функционального модуля тптс.
- Структурная схема типового канала управления уснэ вб на базе тптс.
- Структура уснэ вб на базе тптс.
- Тенденции в организации блочных пунктов управления.
- Блочный пункт управления аэс с ввэр-1000. План размещения технических средств на бпу.
- Организация бпу.
- Управление исполнительными механизмами и регуляторами с арм. Типы рабочих окон управления исполни тельными механизмами.
- Дополнительные вопросы
- Задачи статического и динамического анализа сау.
- Классификация объектов тепловой энергетики по параметру регулирования и их математическое описание.
- Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
- Понятие и основные сведения об алгоритме. Способы записи алгоритмов.
- Схемы и основные структуры алгоритмов.
- Декомпозиция алгоритмов управления и сбора информации в технологическойсистеме.
- Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления.
- Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики.
- Структурная схема унифицированного регулятора сцар.
- Выбор схем регулирования типовых теплоэнергетических процессов и методы настройки типовых регуляторов.
- 19. Структура и принципы построения эвм.
- 20. Классификация эвм по сфере применения.
- 21. Структура и основные функции увм. Иерархическая структура асу тп.
- 22. Структура и функции традиционных асу тп аэс.
- 23. Структура и функции увс "Комплекс-Титан 2"
- 24. Основные недостатки традиционных асу аэс.
- 25. Обобщённая структура и функции информационно-управляющей вычислительной системы (иувс).
- 26. Человеко-машинный интерфейс (чми), реализованный в свбу асу тп аэс
- 27. Основные параметры регулирования аэс. Главные регуляторы станции. Способы регулирования мощности станции.
- 28. Система регулирования мощности реактора. Режимы работы. Структура и функции арм-5, ром.
- 29. Центробежный регулятор частоты вращения турбины. Назначение, функциональная структура, режимы работы эчср.
- 30. Система регулирования уровня в парогенераторе.
- 31. Способы регулирования давления пара перед турбиной.