20. Классификация эвм по сфере применения.
Академик В.М. Глушков указывал, что существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.
Первое направление является традиционным — применение ЭВМ для автоматизации вычислений. Первые, а затем и последующие вычислительные машины классической структуры в основном и создавались для автоматизации вычислений.
Вторая сфера применения ЭВМ связана с использованием их в системах управления. Она зародилась примерно в шестидесятые годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Новой сфере работ в наибольшей степени отвечали мини-ЭВМ. Именно они стали использоваться для управления отраслями, предприятиями, корпорациями. Для выполнения этих работ в настоящее время применяются в основном ПЭВМ.
Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Это направление постепенно набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. По существу, ЭВМ уступают место сложнейшим вычислительным системам.
Даже это краткое перечисление областей применения ЭВМ показывает, что для решения различных задач нужна соответственно и разная вычислительная техника.
Выделим три большие группы ЭВМ:
- большие ЭВМ;
- вычислительные комплексы и системы;
- малые ЭВМ.
Подобное разделение нельзя воспринимать как классификацию по техническим параметрам. Это, скорее эвристический подход, где большой вес имеет предполагаемая сфера применения компьютеров.
Большие ЭВМ. Основное назначение больших ЭВМ — выполнение работ, связанных с обработкой и хранением больших массивов информации, проведением сложных расчетов иисследований в ходе решения научно-исследовательских задач. Работа на больших ЭВМ требует высокой квалификации и опыта. Для неспециалиста в области вычислительной техники большие ЭВМ практически недоступны. В Советском Союзе класс больших ЭВМ составляли ЭВМ семейства ЕС. Название каждой модели образуется из букв ЕС и порядкового номера модели, например: ЕС-1020, ЕС-1022, ЕС-1065. ЭВМ данного семейства разрабатывались совместно различными коллективами стран — членов СЭВ. Первые модели этого семейства появились во второй половине 60-х годов.
Для размещения всех устройств большой ЭВМ требуется машинный зал площадью не менее 100 м2, а для ЭВМ, например, ЕС-1065 —площадью 350 м2. Внешнее оформление ЭВМ семейства ЕС — несколько однотипных шкафов разного назначения.
Большинство АСУ верхнего уровня государственного управления в РФ (в силовых структурах, банках, на транспорте, в связи и т.д.) оснащены машинами семейства ЕС.
После подписания соглашения с фирмой IBM в марте 1993 года Россия получила право производить 23 новейшие модели-аналоги ЭВМ S/390. По расходам на управление и эксплуатацию эти машины оказываются эффективнее других вычислительных средств.
Вычислительные системы. Вычислительные системы состоят из нескольких одновременно работающих ЭВМ или процессоров. Все ЭВМ связаны между собой линиями (проводами) связи. Они могут дублировать друг друга, а могут находиться в резерве. Вычислительные системы строят на различных принципах в зависимости от цели их использования. Вычислительные системы, состоящие из нескольких ЭВМ, называются многомашинными вычислительными комплексами, из нескольких процессоров и общего поля памяти — мультипроцессорными вычислительными системами. И тот, и другой тип вычислительной системы служит для повышения производительности и надежности работы. Пользователи подключаются к вычислительным системам через терминалы, расположенные на их рабочих местах.
Терминалами называются удаленные от ЭВМ устройства ввода-вывода информации, подсоединяемые к ЭВМ через специальные каналы связи. Наиболее распространенный тип терминала — дисплей.
Многомашинные вычислительные системы отечественного производства выпускались на базе ЭВМ семейства ЕС.
Мультипроцессорные вычислительные системы выпускались на базе мини- ЭВМ семейства СМ.
Малые ЭВМ — это наиболее распространенный тип ЭВМ. Общей чертой представителей этой группы являются небольшие габариты и удобство эксплуатации. На некоторых моделях компьютеров без труда может работать человек, имеющий минимальные знания в области вычислительной техники, но являющийся специалистом в другой сфере деятельности.
Среди малых ЭВМ выделены следующие подгруппы: мини-ЭВМ, микроЭВМ, персональные компьютеры, микрокалькуляторы.
Мини-ЭВМ. До появления микроЭВМ и персональных компьютеров мини-ЭВМ целиком определяли класс малых ЭВМ. В отличие от больших ЭВМ мини-ЭВМ очень легко приспособить к управлению различными производствами. Особенно широко они внедрены в автоматизированных системах управления технологическими процессами. Основные функции их — контроль и управление технологическими процессами в реальном масштабе времени. Для этой подгруппы малых ЭВМ не требуются специальные помещения. Их внешнее оформление — минимум два шкафа (высотой 1,8 м, шириной 0,8 м), куда вставляются блоки, и рабочий стол с дисплеем.
Первой мини-ЭВМ была 12-разрядная PDP-5, созданная в 1963 г. американской фирмой DEC и предназначенная для управления ядерным реактором.
В Советском Союзе малые ЭВМ начали появляться с 1959 г.: «Сетунь» (Москва); затем УМ1-НХ (Ленинград); «Днепр» (Киев); управляющие вычислительные комплексы для АСУТП на основе агрегированных средств вычислительной техники (АСВТ-М) М-6000, М-7000, М-400 и т. д.
«УМ1-НХ» — малогабаритная управляющая цифровая вычислительная машина, предназначенная для автоматизации управления производственными процессами. Серийно выпускалась ее с 1963. Построена на потенциальных маломощных транзисторных схемах (общая потребляемая мощность ЦВМ 220 ва); в оперативном запоминающем устройстве использованы миниатюрные интегральные элементы.
Отличительная особенность машины — относительно высокая эксплуатационная надежность (благодаря резкому снижению энергетического уровня работы элементов; основное напряжение питания — 1,7 в). Для расширения области применения машины разработаны внешнее многоканальное устройство ввода—вывода, управляющий комплекс с переменной комплектацией на основе «УМ1-НХ». УМ1-НХ стала одной из самых дешевых отечественных управляющих вычислительных машин.
АСВТ-М (агрегатный комплекс средств вычислительной техники на микроэлектронной элементной базе) представляет собой набор агрегатных устройств, предназначенных для компоновки информационных и управляющих вычислительных комплексов (УВК), работающих в реальном масштабе времени. На их базе могут быть также созданы автоматизированные системы управления агрегатами, цехами и производствами, а также вычислительные центры.
Каждое из устройств АСВТ-М представляет собой конструктивно и функционально законченное изделие с унифицированными входами и выходами.
По функциональному назначению вся номенклатура агрегатных модулей АСВТ-М делится на устройства центрального управления и переработки информации, хранения информации, связи с объектом, связи с оперативным персоналом, внутрисистемной связи, выхода на внешние (внесистемные) линии связи, согласователи.
Агрегатный комплекс допускает последующую модернизацию и наращивание системы управления.
В АСВТ-М используют семейства ЭВМ: М-40, М-400, М-6000, М-7000.
Управляющие вычислительные комплексы М-6000 и М-7000 - наиболее распространенные из серии АСВТ-М. Они имеют развитую и совершенную систему связи с объектом управления и оперативным персоналом, широкую систему команд и достаточно полное внутреннее математическое обеспечение.
Базовая конфигурация комплекса М-7000 включает процессор и одно ОЗУ на 16 Кслов, а также таймер, перфоленточное устройство ввода и вывода и печатающее устройство. Были разработаны комплексы более сложных конфигураций, включающие дополнительные устройства и большое число терминалов.
В 1974 г. В СССР была организована совместная работа в содружестве со странами — членами СЭВ. Создано унифицированное стандартное семейство мини-ЭВМ, которое получило название системы малых (по другой версии – «советчик мастера») - (СМ) ЭВМ. В 1976—1980 гг. выпущены модели первой очереди: СМ-1, СМ-2, СМ-3, СМ-4. Эти модели программно совместимы с моделями АСВТ-М: СМ-1 и СМ-2 с М-6000, М-7000; СМ-3 и СМ-4 с М-400.
В УВК СМ ЭВМ агрегатные модули выполняются в виде автономных, конструктивно законченных, комплектных блоков с автономным питанием и встроенной вентиляцией. Они реализованы в соответствии со стандартом Международной электротехнической комиссии (МЭК) и размещены в стандартных стойках без каких-либо конструктивных доработок. Такая реализация значительно упрощает проектную компоновку, монтаж, модернизацию и обслуживание СМ ЭВМ по сравнению с АСВТ-М.
СМ ЭВМ построена как агрегатная система средств, позволяющая компоновать.управляющие вычислительные комплексы с различным составом оборудования и обеспечивать замену одного устройства другим аналогичного назначения без изменения общего функционирования системы.
МикроЭВМ— это компьютеры, где в качестве элементной базы использован микропроцессор. Предназначены они для работы в режиме индивидуального общения человека с ЭВМ, хотя имеется возможность в некоторых случаях работать одновременно и нескольким пользователям. Все оборудование микроЭВМ размещается в пределах стола. На микроЭВМ могут работать как специалисты в области вычислительной техники, так и неспециалисты, имеющие некоторый багаж компьютерных знаний. Основные технические характеристики микроЭВМ находятся на уровне мини-ЭВМ и некоторых моделей ЕС. Их стоимость намного меньше, а надежность существенно выше.
В СССР широко использовались отечественные микроЭВМ «Электроника С5», «Электроника 60», «Электроника НЦ», «Электроника 100», «Электроника К1». Из первых моделей наиболее хорошо себя зарекомендовала «Электроника 60», которая кроме высоких технических характеристик имела совместимость с «Электроникой 100/25», СМ-3, СМ-4.
Персональные ЭВМ по своим характеристикам аналогичны микроЭВМ. Однако существует ряд признаков, по которым был выделен именно этот подкласс. Одним из самых важных признаков является создание при работе на ЭВМ таких условий, когда пользователь, имеющий минимальные знания в области вычислительной техники, чувствует себя за пультом управления персональным компьютером удобно и комфортно. Достигается это наличием в памяти ЭВМ большого количества сервисных, а также специально разработанных для пользователей — специалистов в конкретной области программ.
Микрокалькуляторы можно отнести к подклассу микроЭВМ, где отсутствует внешняя память. Предназначены они для проведения небольших расчетов, удобны в эксплуатации. Для работы на микрокалькуляторах в программном режиме надо знать принципы программирования на машинно-ориентированном языке.
- Автоматизированные системы управления атомных электростанций
- Структура системы управления.
- Объект управления. Виды используемых объектом ресурсов.
- Этапы цикла управления.
- Определение асу. Системы автоматического и автоматизированного управления.
- Структура и режим работы информационно – поисковой асу.
- Структура и режим работы информационно-советующей асу.
- Классификация асу по различным признакам и их характеристики.
- Характерные признаки асу тп.
- Техническая структура асу тп с управляющей эвм (увм).
- Общая характеристика и классификация основных узлов увм.
- Принципы организации связи увм с технологическим объектом управления.
- Основные режимы работы увм в составе асу тп.
- Особенности аэс как объекта управления.
- Технологические системы аэс, обеспечивающие основной технологический процесс.
- Режимы работы аэс и их характеристики.
- Назначение и цель создания асу тп аэс.
- Стадии и этапы создания асутп аэс.
- Функции асу тп аэс.
- Информационные функции асу тп аэс.
- Управляющие функции асу тп аэс.
- Задачи автоматического управления на аэс.
- Системные функции асу тп аэс.
- Функции управляющих систем асутПобщестанционной части.
- Оперативные пункты управления общестанционного уровня и их функции.
- Функции управляющих систем асутп энергоблока.
- Пункты управления энергоблоком и их функции.
- Классификация подсистем асу тп энергоблока в соответствии с требованиями безопасности и надежности.
- Управляющие и информационные системы асу тп энергоблока.
- Управляющие системы безопасности. Функции суз.
- Управляющие системы безопасности. Функции усбт.
- Назначение, состав и функции скуд ру.
- Назначение и функции сврк.
- Функции и задачи ску ро.
- Функции и задачи ску то.
- Функции ску эч.
- Назначение, состав, функции асрк.
- Назначение и функции системы регистрации важных параметров эксплуатации (срвпэ).
- Назначение, состав, функции, порядок работы системы регистрации аварийных ситуаций типа "Черный ящик".
- Назначение, состав, функции системы дистанционного визуального контроля.
- Информационные потоки общестанционного уровня и уровня энергоблока в асу тп аэс.
- Тенденции создания асу тп аэс.
- Факторы повышения надежности и эффективности систем управления современных аэс.
- Иерархия структуры асу тп аэс.
- Структурная схема асу тп аэс с ввэр – 1000.
- Функции свбу.
- Состав программно-технических средств (птс) свбу.
- Назначение и состав рабочей станции (рс).
- Архитектура асу тп общестанционного уровня.
- Архитектура асу тп энергоблока.
- Архитектура усб.
- Архитектура ску ро, то.
- Назначение, состав, функции программно-технических средств нижнего уровня асу тп.
- Типовые программно-технические средства тптс, общая характеристика, типы модулей.
- Архитектура функционального модуля тптс.
- Структурная схема типового канала управления уснэ вб на базе тптс.
- Структура уснэ вб на базе тптс.
- Тенденции в организации блочных пунктов управления.
- Блочный пункт управления аэс с ввэр-1000. План размещения технических средств на бпу.
- Организация бпу.
- Управление исполнительными механизмами и регуляторами с арм. Типы рабочих окон управления исполни тельными механизмами.
- Дополнительные вопросы
- Задачи статического и динамического анализа сау.
- Классификация объектов тепловой энергетики по параметру регулирования и их математическое описание.
- Общий вид экспериментальных переходных кривых теплоэнергетических процессов. Обобщенная энергетическая форма уравнений динамики регулируемых объектов.
- Понятие и основные сведения об алгоритме. Способы записи алгоритмов.
- Схемы и основные структуры алгоритмов.
- Декомпозиция алгоритмов управления и сбора информации в технологическойсистеме.
- Классификация процессов функционирования энергоблока аэс. Типовые алгоритмы управления.
- Типовые алгоритмы регулирования, типовые регуляторы и их динамические характеристики.
- Структурная схема унифицированного регулятора сцар.
- Выбор схем регулирования типовых теплоэнергетических процессов и методы настройки типовых регуляторов.
- 19. Структура и принципы построения эвм.
- 20. Классификация эвм по сфере применения.
- 21. Структура и основные функции увм. Иерархическая структура асу тп.
- 22. Структура и функции традиционных асу тп аэс.
- 23. Структура и функции увс "Комплекс-Титан 2"
- 24. Основные недостатки традиционных асу аэс.
- 25. Обобщённая структура и функции информационно-управляющей вычислительной системы (иувс).
- 26. Человеко-машинный интерфейс (чми), реализованный в свбу асу тп аэс
- 27. Основные параметры регулирования аэс. Главные регуляторы станции. Способы регулирования мощности станции.
- 28. Система регулирования мощности реактора. Режимы работы. Структура и функции арм-5, ром.
- 29. Центробежный регулятор частоты вращения турбины. Назначение, функциональная структура, режимы работы эчср.
- 30. Система регулирования уровня в парогенераторе.
- 31. Способы регулирования давления пара перед турбиной.