13.6 Цикл теплового насоса
Для отопительных целей расходуется огромное количество ценного топлива, тогда как в природе имеются неиспользуемые или, вернее, очень мало используемые, практически бесконечные источники тепла низкой температуры (наружный воздух, вода различных водоемов).
И спользование тепла низкотемпературных источников для отопления может быть осуществлено с помощью теплового насоса, представляющего собой установку, в которой температура рабочего тела (теплоносителя) повышается посредством затраты механической (или какой-либо другой) энергии до такого уровня, при котором теплоноситель способен отдать тепло в отопительную систему. Работа теплового насоса, схема которого представлена на рисунке 13.12,состоит в следующем.
Рисунок 13.12
Т аким образом, несмотря на внешнее сходство, между работой холодильной установки и работой теплового насоса имеется принципиальное различие. В первом случае наружная среда является теплоприемником, в который сбрасывается тепло, отнимаемое от охлаждаемого объекта, во втором случае она является источником тепла, которое передается на более высокий температурный уровень.
Э Рисунок 13.13
Естественно, что и критерии оценки эффективности этих двух циклов должны быть различными. Если совершенство цикла холодильной установки определяется количеством тепла, отнимаемым от охлаждаемого объекта за счет единицы затрачиваемой энергии, т. е. ее холодильным коэффициентом е, то совершенство цикла теплонасосной установки определяется количеством тепла, передаваемым в отопительную систему за счет единицы затрачиваемой энергии. Соответственно этому эффективность его характеризуется величиной
, (13.2)
называемой отопительным коэффициентом.
Величина отопительного коэффициента зависит прежде всего от температур холодного источника и горячего приемника тепла. Если эти температуры заданы, то предельно высокую величину отопительного коэффициента можно получить, определив его значение для соответствующего обратного цикла Карно. Так, если температуру внешней среды Т0 принять равной 275 °К, а температуру теплоносителя в отопительной системе Т – равной 340 °К, то для цикла Карно получаем
.
Естественно, что в действительности отопительный коэффициент теплонасосных установок получается меньшим, но он все же имеет значение от 3 до 4. Этим и определяется преимущество применения тепловых насосов перед непосредственным использованием электронагревательных устройств. Поэтому они и находят все более широкое применение в отопительной технике.
Тема № 14
Элементы химической термодинамики
- 10.1 Назначение и типы компрессоров
- 10.2 Термодинамический анализ работы компрессора
- 10.3 Многоступенчатое сжатие
- 10.4 Расход мощности на привод компрессора
- 10.5 Индикаторная диаграмма поршневого компрессора
- 10.6 Изотермический и адиабатный к.П.Д. Компрессора
- 11.1 Циклы поршневых двигателей внутреннего сгорания
- 11.2 Циклы газотурбинных установок
- 11.5 Сравнение циклов гту
- 11.6 Методы повышения к.П.Д. Гту
- 12.1 Цикл Карно для водяного пара и его недостатки
- 12.2 Цикл Ренкина
- 12.3 Влияние параметров пара на термический к.П.Д. Цикла Ренкина
- 12.4 Регенеративный цикл для водяного пара
- 12.5 Теплофикационные циклы
- 12.6 Циклы бинарных парогазовых установок
- 12.7 Методы прямого преобразования энергии
- 13.1 Общие характеристики холодильного цикла
- 13.2 Цикл воздушной холодильной установки
- 13.3 Цикл парокомпрессионной холодильной установки
- 13.4 Цикл пароэжекторной холодильной установки
- 13.5 Абсорбционные холодильные установки
- 13.6 Цикл теплового насоса
- 14.1 Основные понятия термодинамики химических реакций
- 14.2 Тепловой эффект химических реакций
- 14.3 Закон Гесса и его следствия
- 14.4 Закон Кирхгофа
- 14.5 Скорость химической реакции и закон действующих масс
- 14.6 Обратимость реакций и химическое равновесие
- 14.7 Степень диссоциации и ее связь с константой равновесия
- 14.8 Термодинамические условия равновесия химических реакций
- 14.9 Свободная энергия и изобарный потенциал как характеристические функции
- 14.10 Максимальная работа химических реакций
- 14.11 Уравнение Гиббса –Гельмгольца
- 14.12 Максимальная работа как мера химического сродства
- 14.13 Уравнение изотермы химической реакции
- 14.14 Закон Вант – Гоффа
- 14.15 Зависимость скорости реакции от температуры
- 14.16 Тепловой закон Нернста