14.10 Максимальная работа химических реакций
Как уже упоминалось, в ходе химической реакции может совершаться работа, не связанная с изменением объема (например, работа тока в цепи гальванического элемента). Эту составляющую суммарной работы химической системы называют полезной работой.
Всякие необратимые изменения в системе связаны с потерей полезной работы, поэтому величина последней будет максимальна в том случае, если реакция протекает термодинамически обратимо. В связи с этим полезную работу термодинамически обратимых реакций называют максимальной работой.
В отличие от работы изменения объема, которая обозначается буквой L, максимальную работу химической реакции обозначим буквой А. Тогда общее уравнение первого и второго законов термодинамики для термодинамически обратимых реакций примет вид
TdS = dU + dL + dA.
Для изохорно-изотермических реакций dL.==0, поэтому
TdS = dU + dAV,
откуда
dAV = TdS – dU.
Интегрируя это уравнение с учетом того, что V = const и Т = const, получаем
AV = T (S2 – S1) – (U2 – U1)
или
AV = (U1– TS1) – (U2 –TS2),
т.е.
AV = F1 –F2. (14.34)
Таким образом, максимальная работа термодинамически обратимой изобарно-изотермической реакции равна убыли изобарного потенциала системы. В связи с этим последний иногда называют свободной энтальпией.
Это вывод разъясняет смысл термина «свободная энергия», принятый для обозначения функции состояния F. Он показывает, что из всей внутренней энергии системы
U = F + TS
может быть превращена в полезную работу только часть ее, равная F. В соответствии с этим вторая часть ее TS, которая в полезную работу превращена быть не может, называется связанной энергией.
Для изобарно – изотермических обратимых реакций общее уравнение первого второго законов термодинамики имеет вид
TdS = dU + dL+dAp
или
dAp = TdS – dU – pdV,
поскольку элементарная работа изменения объема
dL = pdV.
Интегрируя это уравнение с учетом того, что р = const и Т = const, получаем
Ap = T (S2– S1) – (U2 – U1) –p(V2 –V1)
или
Ap = (U1 +pV1 – TS1)–(U2+pV2– TS2)
и далее
Ap = (I1–TS1)–(I2-TS2),
т.е.
Ap = Z1–Z2 . (14.35)
Таким образом, максимальная работа термодинамически обратимой изобарно – изотермической реакции равна убыли изобарного потенциала системы. В связи с этим последнее иногда называется свободной энтальпии.
По аналогии с механикой, в которой работа перемещения тела в силовом поле равна разности потенциалов в начальной и конечной точках, функции F = f (V, Т) и Z = f (p, T), разность значений которых в двух состояниях системы представляет собой полезную работу этой системы при обратимом переходе в соответствующих условиях (т. е. при V=const и T= const или при p = const и Т = const) из одного состояния в другое, получили название термодинамических потенциалов. Нетрудно видеть, что свойствами термодинамических потенциалов обладают, кроме функций F и Z, также и характеристические функции U и I, поскольку в обратимом адиабатном процессе разность U1 – U2 равна работе изменения объема рабочего тела, а разность I1 –I2 – технической работе потока этого рабочего тела.
- 10.1 Назначение и типы компрессоров
- 10.2 Термодинамический анализ работы компрессора
- 10.3 Многоступенчатое сжатие
- 10.4 Расход мощности на привод компрессора
- 10.5 Индикаторная диаграмма поршневого компрессора
- 10.6 Изотермический и адиабатный к.П.Д. Компрессора
- 11.1 Циклы поршневых двигателей внутреннего сгорания
- 11.2 Циклы газотурбинных установок
- 11.5 Сравнение циклов гту
- 11.6 Методы повышения к.П.Д. Гту
- 12.1 Цикл Карно для водяного пара и его недостатки
- 12.2 Цикл Ренкина
- 12.3 Влияние параметров пара на термический к.П.Д. Цикла Ренкина
- 12.4 Регенеративный цикл для водяного пара
- 12.5 Теплофикационные циклы
- 12.6 Циклы бинарных парогазовых установок
- 12.7 Методы прямого преобразования энергии
- 13.1 Общие характеристики холодильного цикла
- 13.2 Цикл воздушной холодильной установки
- 13.3 Цикл парокомпрессионной холодильной установки
- 13.4 Цикл пароэжекторной холодильной установки
- 13.5 Абсорбционные холодильные установки
- 13.6 Цикл теплового насоса
- 14.1 Основные понятия термодинамики химических реакций
- 14.2 Тепловой эффект химических реакций
- 14.3 Закон Гесса и его следствия
- 14.4 Закон Кирхгофа
- 14.5 Скорость химической реакции и закон действующих масс
- 14.6 Обратимость реакций и химическое равновесие
- 14.7 Степень диссоциации и ее связь с константой равновесия
- 14.8 Термодинамические условия равновесия химических реакций
- 14.9 Свободная энергия и изобарный потенциал как характеристические функции
- 14.10 Максимальная работа химических реакций
- 14.11 Уравнение Гиббса –Гельмгольца
- 14.12 Максимальная работа как мера химического сродства
- 14.13 Уравнение изотермы химической реакции
- 14.14 Закон Вант – Гоффа
- 14.15 Зависимость скорости реакции от температуры
- 14.16 Тепловой закон Нернста