13.4 Цикл пароэжекторной холодильной установки
Особенностью пароэжекторных холодильных установок является то, что сжатие паров холодильного агента осуществляется в пароструйном компрессоре, причем рабочим паром последнего является пар самого холодильного агента, только более высокого давления. Этот рабочий пар получается в паровом котле за счет затраты тепла, полученного при сжигании топлива.
Работа пароэжекторной установки, выполненной по простейшей схеме
(рис. 13.7), происходит следующим образом.
Пар холодильного агента из испарителя 1 поступает с низким давлением р2
в смесительную камеру парового эжектора 2. Сюда же подводится пар холодильного агента более высокого давления р1 из парового котла 3. Проходя через сопло эжектора, рабочий пар расширяется с понижением давления до р2, и струя его при выходе в смесительную камеру эжектора имеет большую скорость.
З Рисунок 13.7
Теоретический цикл пароэжекторной установки в Ts-диаграмме (рис. 13.8) изображается следующим образом.
Л Рисунок 13.8
Количество тепла, подводимое к 1 кг холодильного агента в процессе его испарения в испарителе 1, измеряется площадью прямоугольника 1-2-2/-1/-1. Тепло, затрачиваемое на осуществление цикла извне, отнесенное к 1 кг рабочего пара, измеряется площадью 7-8-3-3/-7/-7. Поскольку количества холодильного агента и рабочего пара в цикле различны, описанный график является до некоторой степени условным.
Если количество рабочего пара, необходимое для получения 1 кг смеси при промежуточном давлении р3, составляет m кг, то количество его, приходящееся на 1 кг холодильного агента, поступающего в испаритель, составляет m/(1-m) кг. Поэтому для определения расхода тепла на 1 кг холодильного агента площадь 7-8-3-3/-7/-7 нужно умножить на m/(1-m).
Эффективность пароэжекторной установки, затрачивающей для производства холода энергию не в виде работы, а в виде тепла сравнительно высокого потенциала, оценивается, как уже было упомянуто, коэффициентом использования тепла, определяемым по формуле (13.1).
Этот коэффициент характеризует степень необратимости рабочего цикла холодильной установки и является мерой ее термодинамического совершенства. Из двух холодильных установок, работающих в одном и том же интервале температур, более совершенной является та, у которой коэффициент использования тепла больше. Преимуществом пароэжекторной установки является отсутствие громоздкого и дорогостоящего парового компрессора, а, кроме того, возможность использования весьма низкого давления р2 без значительного увеличения габаритов установки. Это дает возможность применения в качестве холодильного агента воды. В пароэжекторной установке, работающей на водяном паре, без особых затруднений удается достигнуть температуры 0°С, при которой давление р2 составляет всего 0,006108 бар, а удельный объем сухого насыщенного пара равен 206,3 м3/кг. При таких параметрах ни турбокомпрессор, ни тем более поршневой компрессор использовать невозможно.
- 10.1 Назначение и типы компрессоров
- 10.2 Термодинамический анализ работы компрессора
- 10.3 Многоступенчатое сжатие
- 10.4 Расход мощности на привод компрессора
- 10.5 Индикаторная диаграмма поршневого компрессора
- 10.6 Изотермический и адиабатный к.П.Д. Компрессора
- 11.1 Циклы поршневых двигателей внутреннего сгорания
- 11.2 Циклы газотурбинных установок
- 11.5 Сравнение циклов гту
- 11.6 Методы повышения к.П.Д. Гту
- 12.1 Цикл Карно для водяного пара и его недостатки
- 12.2 Цикл Ренкина
- 12.3 Влияние параметров пара на термический к.П.Д. Цикла Ренкина
- 12.4 Регенеративный цикл для водяного пара
- 12.5 Теплофикационные циклы
- 12.6 Циклы бинарных парогазовых установок
- 12.7 Методы прямого преобразования энергии
- 13.1 Общие характеристики холодильного цикла
- 13.2 Цикл воздушной холодильной установки
- 13.3 Цикл парокомпрессионной холодильной установки
- 13.4 Цикл пароэжекторной холодильной установки
- 13.5 Абсорбционные холодильные установки
- 13.6 Цикл теплового насоса
- 14.1 Основные понятия термодинамики химических реакций
- 14.2 Тепловой эффект химических реакций
- 14.3 Закон Гесса и его следствия
- 14.4 Закон Кирхгофа
- 14.5 Скорость химической реакции и закон действующих масс
- 14.6 Обратимость реакций и химическое равновесие
- 14.7 Степень диссоциации и ее связь с константой равновесия
- 14.8 Термодинамические условия равновесия химических реакций
- 14.9 Свободная энергия и изобарный потенциал как характеристические функции
- 14.10 Максимальная работа химических реакций
- 14.11 Уравнение Гиббса –Гельмгольца
- 14.12 Максимальная работа как мера химического сродства
- 14.13 Уравнение изотермы химической реакции
- 14.14 Закон Вант – Гоффа
- 14.15 Зависимость скорости реакции от температуры
- 14.16 Тепловой закон Нернста