13.3. Электрический ток в газах. Виды газового разряда.
Газы при не слишком высоких температурах и при давлениях, близких к атмосферному, являются хорошими изоляторами. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов. Газ становится проводником электричества, когда некоторая часть его молекул ионизуется, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (например, поднеся к заряженному электрометру пламя свечи, наблюдаем спад его заряда; здесь электропроводность газа вызвана нагреванием).
При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положительных ионов. Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохождение электрического тока через газы называется газовым разрядом.
Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафиолетовое, рентгеновское и -излучения), корпускулярное излучение (потоки электронов, протонов, -частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию, называемую энергией ионизации, значения которой для атомов различных веществ лежат в пределах 4—25 эВ.
Одновременно с процессом ионизации газа всегда идет и обратный процесс — процесс рекомбинации: положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации.
Электропроводность газа нулю не равна никогда, так как в нем всегда имеются свободные заряды, образующиеся в результате действия на газы излучения радиоактивных веществ, имеющихся на поверхности Земли, а также космического излучения. Эта незначительная электропроводность воздуха (интенсивность ионизации под действием указанных факторов невелика) служит причиной утечки зарядов наэлектризованных тел даже при хорошей их изоляции.
Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока.
Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными.
- Кафедра физики
- Содержание
- Предисловие
- Методические рекомендации по изучению дисциплины
- Перечень
- 2. Краткий курс лекций
- 1.2. Кинематика материальной точки
- Лекция № 2
- 2.1. Первый закон Ньютона. Инерция, сила. Инерциальные системы отсчета.
- 2.2. Второй закон Ньютона. Масса.
- 2.3. Третий закон Ньютона.
- 2.4. Импульс. Закон сохранения импульса.
- 2.5. Силы в природе.
- 2.6. Реактивное движение. Уравнение движения тела переменной массы.
- 2.7. Работа и мощность
- 2.8. Энергия. Закон сохранения энергии
- Лекция № 3
- 3.1. Понятие абсолютно твердого тела. Поступательное и вращательное движение тела. Центр масс.
- 3.2. Момент силы.
- 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
- 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
- Лекция № 4
- 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
- 4.2. Уравнение неразрывности.
- 4.3. Уравнение Бернулли и выводы из него
- Лекция №5
- 5.1. Гармонические колебания.
- 5.2. Сложение гармонических колебаний.
- 5.3. Сложение перпендикулярных колебаний.
- 5.4. Дифференциальное уравнение колебаний.
- 5.5. Энергетические соотношения в колебательных процессах.
- 5.6. Колебания математического и физического маятников
- 5.7. Уравнение вынужденных колебаний. Резонанс
- Лекция №6
- 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
- 6.2. Энергия волны
- 6.3. Упругие волны в твердом теле
- Лекция №7
- 7.1. Основные положения мкт.
- Агрегатные состояния вещества
- 7.2. Опытные законы идеального газа
- Закон Авогадро
- 7.3. Уравнение состояния идеального газа
- 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
- 7.5. Закон Максвелла для распределения молекул по скоростям.
- 7.6. Барометрическая формула. Распределение Больцмана
- Лекция №8
- 8.2. Столкновения молекул и явления переноса в идеальном газе
- 8.3. Среднее число столкновений и среднее время свободного пробега молекул
- 8.4.Средняя длина свободного пробега молекул
- 8.5. Диффузия в газах
- 8.6. Вязкость газов
- 8.7. Теплопроводность газов
- 8.8. Осмос. Осмотическое давление
- Лекция №9
- 9.1.Распределение энергии по степеням свободы молекул
- 9.2. Внутренняя энергия
- 9.3. Работа газа при его расширении
- 9.4. Первое начало термодинамики
- 9.5. Теплоемкость. Уравнение Майера
- 9.6. Адиабатный процесс
- 9.7. Политропический процесс
- 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
- 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
- 9.10. Второе начало термодинамики и его статистический смысл.
- Лекция №10
- 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
- Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
- 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
- Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
- 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
- 10.4. Капиллярные явления
- 10.5. Твёрдые тела
- Дефекты в кристаллах
- Тепловые свойства кристаллов
- Жидкие кристаллы
- Лекция №11
- 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
- 11.2. Закон Кулона
- 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
- 11.4. Электрический диполь
- 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
- 11.6. Работа сил электростатического поля по перемещению зарядов.
- 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
- 11.7. Связь между напряженностью электрического поля и потенциалом
- 11.8. Типы диэлектриков. Поляризация диэлектриков.
- 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - смещения, - напряженности и - поляризованности
- 11.10. Проводники в электростатическом поле
- 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
- 11.12. Энергия заряженного проводника, системы проводников и конденсатора
- Лекция №12
- 12.1. Электрический ток. Сила и плотность тока.
- 12.2. Электродвижущая сила источника тока. Сторонние силы. Напряжение
- 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 12.4. Закон Ома для неоднородного участка цепи
- 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
- 12.6. Правила Кирхгофа
- Лекция №13
- 13.1. Классическая теория электропроводности металлов
- 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
- 13.3. Электрический ток в газах. Виды газового разряда.
- Самостоятельный газовый разряд и его типы
- Лекция №14
- 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
- 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
- 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
- 14.4. Магнитный поток. Теорема Гаусса
- 14.5. Работа перемещения проводника и рамки с током в магнитном поле
- 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
- 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
- 14.8. Закон полного тока для магнитного поля в веществе
- 14.9. Виды магнетиков
- Лекция 15
- 15.1. Явление электромагнитной индукции.
- 15.2. Явление самоиндукции
- 15.3. Энергия магнитного поля
- 15.4. Электромагнитная теория Максвелла.
- 1) Первое уравнение Максвелла
- 2) Ток смешения. Второе уравнение Максвелла
- 3)Третье и четвертое уравнения Максвелла
- 4)Полная система уравнений Максвелла в дифференциальной форме
- 15.5. Переменный ток
- Лекция № 16
- 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
- 16.2. Отражение и преломление света на сферической поверхности. Линзы.
- 16.3. Основные фотометрические величины и их единицы
- 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
- 17.2. Способы получения интерференционных картин.
- 17.3. Интерференция в тонких пленках.
- 17.4. Просветление оптики
- 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
- 17.6. Дифракция Френеля от простейших преград.
- 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
- 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
- 17.9. Поляризация света. Естественный и поляризованный свет.
- 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
- 17.11.Поляризация при двойном лучепреломлении.
- 17.12. Вращение плоскости поляризации.
- 17.13. Дисперсия света. Поглощение (абсорбция) света.
- Лекция №18
- 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
- 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
- 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
- Лекция №19
- 19.2.Линейчатый спектр атома водорода.
- 19.3. Постулаты Бора. Опыты Франка и Герца.
- Лекция №20
- 20.1.Атомное ядро.
- 20.2.Ядерные силы.
- 20.3.Энергия связи ядер. Дефект массы.
- 20.4.Реакции деления ядер.
- 2.5.Термоядерный синтез.
- 20.6.Радиоактивность. Закон радиоактивного распада.
- План-график самостоятельной работы
- План-график проведения лабораторно-практических занятий
- Перечень вопросов для подготовки к коллоквиуму Механика
- Формулы
- Определения
- Вопросы к экзамену
- Правила и образец оформления лабораторной работы