17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
При наложении световые волн выполняется принцип суперпозиции: результирующий световой вектор является суммой световых векторов отдельных волн. При этом может получиться волна, интенсивность которой не будет равна сумме интенсивностей складывающихся волн.
Интерференция свойственна не только световым волнам, являющимися по своей природе электромагнитными волнами, но и волнам любого другого типа. Поскольку волны любого вида удовлетворяют одним и тем же волновым уравнениям, то при описании интерференции любых видов волн применяется один и тот же математический аппарат. Поэтому, сущность интерференции рассмотрим на примере сложения двух одномерных гармонических волн (волн вида ) одинаковой частоты. Накладываясь друг на друга, они возбуждают в некоторой точке пространства гармонические колебания
,
амплитуда которых определяется выражением
. Интенсивность волны пропорциональна квадрату амплитуды . Поэтому, наблюдаемая при наложении волн интенсивность
. (17-1) Результат сложения зависит от разности фазd (меняющейся при переходе к другой пространственной точке). В тех точках пространства, для которых ,; в точках, для которых,.
Таким образом, при наложении гармонических (в общем случае когерентных) световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией волн.
Рассмотрим точечный источник света S, который излучает монохроматический свет (свет фиксированной частоты) (рис.17.1). До точки P первый луч проходит в среде с показателем преломления путь, второй луч проходит в среде с показателем преломленияпуть. Если в точкеS фаза колебаний равна , то первый луч возбудит в точкеP колебание , а второй луч – колебание(и– фазовые скорости волн). Следовательно, разность фаз колебаний, возбуждаемых лучами в точкеP, будет равна
.
Множитель равен(– длина волны в вакууме) и выражению для разности фаз можно придать вид
, (17-2)
где (17-3)
есть величина, называемая оптической разностью хода.
Из формулы (17-2) видно, что если оптическая разность хода равна целому числу длин волн в вакууме
, (17-4)
то разность фаз и колебания будут происходить с одинаковой фазой. Следовательно, условие (17-4) есть условие интерференционного максимума.
Если D равна полуцелому числу длин волн в вакууме,
, (17-5)
то , так что колебания в точкеP находятся в противофазе. Условие (17-5) есть условие интерференционного минимума.
В реальности монохроматических волн (неограниченных во времени волн фиксированной частоты) не существует. Для реальных световых волн необходимым условием интерференции является их когерентность. Так называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.
Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела складывается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью ~10-8 с и протяженностью около 3 м независимо друг от друга. Начальные фазы этих волновых цугов никак не связаны между собой. Помимо этого, даже для одного и того же атома начальные фазы цугов при следующих актах излучения меняются случайным образом.
Расчет интерференционной картины от двух источников. Рассмотрим две цилиндрические когерентные световые волны, исходящие из источников и, имеющих вид параллельных, тонких светящихся нитей либо узких щелей (рис.17.2). Если в области, в которой волны перекрываются, внести экран, то на нем будет видна интерференционная картина, которая имеет вид чередующихся светлых и темных полос. Рассчитаем положение полос и их ширину. Экран
Рис.17.2
поместим параллельно обеим щелям на одинаковом расстоянии l. Начало отсчета выберем в точке O, относительно которой ирасположены симметрично. Источники будем считать испускающими свет в одинаковой фазе. Из рисунка видно, что
, .
Следовательно,
оптическая разность хода равна
.
Разность хода составляет несколько длин волн и всегда значительно меньшеи(). Поэтому можно положитьи
. (17-6)
В большинстве случаев l>>d, поэтому , т.е.
(17-7)
Подстановка значения D в условие (17-4) дает, что максимумы интенсивности будут наблюдаться при значениях
. (17-8)
Здесь – длина волны в среде.
Подставив (17-7) в условие (17-5), получим координаты минимумов интенсивности
. (17-9)
Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами –шириной интерференционной полосы. Из (17-8) и (17-9) следует, что эти расстояния имеют одинаковое значение
. (17-10)
- Кафедра физики
- Содержание
- Предисловие
- Методические рекомендации по изучению дисциплины
- Перечень
- 2. Краткий курс лекций
- 1.2. Кинематика материальной точки
- Лекция № 2
- 2.1. Первый закон Ньютона. Инерция, сила. Инерциальные системы отсчета.
- 2.2. Второй закон Ньютона. Масса.
- 2.3. Третий закон Ньютона.
- 2.4. Импульс. Закон сохранения импульса.
- 2.5. Силы в природе.
- 2.6. Реактивное движение. Уравнение движения тела переменной массы.
- 2.7. Работа и мощность
- 2.8. Энергия. Закон сохранения энергии
- Лекция № 3
- 3.1. Понятие абсолютно твердого тела. Поступательное и вращательное движение тела. Центр масс.
- 3.2. Момент силы.
- 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
- 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
- Лекция № 4
- 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
- 4.2. Уравнение неразрывности.
- 4.3. Уравнение Бернулли и выводы из него
- Лекция №5
- 5.1. Гармонические колебания.
- 5.2. Сложение гармонических колебаний.
- 5.3. Сложение перпендикулярных колебаний.
- 5.4. Дифференциальное уравнение колебаний.
- 5.5. Энергетические соотношения в колебательных процессах.
- 5.6. Колебания математического и физического маятников
- 5.7. Уравнение вынужденных колебаний. Резонанс
- Лекция №6
- 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
- 6.2. Энергия волны
- 6.3. Упругие волны в твердом теле
- Лекция №7
- 7.1. Основные положения мкт.
- Агрегатные состояния вещества
- 7.2. Опытные законы идеального газа
- Закон Авогадро
- 7.3. Уравнение состояния идеального газа
- 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
- 7.5. Закон Максвелла для распределения молекул по скоростям.
- 7.6. Барометрическая формула. Распределение Больцмана
- Лекция №8
- 8.2. Столкновения молекул и явления переноса в идеальном газе
- 8.3. Среднее число столкновений и среднее время свободного пробега молекул
- 8.4.Средняя длина свободного пробега молекул
- 8.5. Диффузия в газах
- 8.6. Вязкость газов
- 8.7. Теплопроводность газов
- 8.8. Осмос. Осмотическое давление
- Лекция №9
- 9.1.Распределение энергии по степеням свободы молекул
- 9.2. Внутренняя энергия
- 9.3. Работа газа при его расширении
- 9.4. Первое начало термодинамики
- 9.5. Теплоемкость. Уравнение Майера
- 9.6. Адиабатный процесс
- 9.7. Политропический процесс
- 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
- 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
- 9.10. Второе начало термодинамики и его статистический смысл.
- Лекция №10
- 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
- Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
- 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
- Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
- 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
- 10.4. Капиллярные явления
- 10.5. Твёрдые тела
- Дефекты в кристаллах
- Тепловые свойства кристаллов
- Жидкие кристаллы
- Лекция №11
- 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
- 11.2. Закон Кулона
- 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
- 11.4. Электрический диполь
- 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
- 11.6. Работа сил электростатического поля по перемещению зарядов.
- 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
- 11.7. Связь между напряженностью электрического поля и потенциалом
- 11.8. Типы диэлектриков. Поляризация диэлектриков.
- 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - смещения, - напряженности и - поляризованности
- 11.10. Проводники в электростатическом поле
- 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
- 11.12. Энергия заряженного проводника, системы проводников и конденсатора
- Лекция №12
- 12.1. Электрический ток. Сила и плотность тока.
- 12.2. Электродвижущая сила источника тока. Сторонние силы. Напряжение
- 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 12.4. Закон Ома для неоднородного участка цепи
- 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
- 12.6. Правила Кирхгофа
- Лекция №13
- 13.1. Классическая теория электропроводности металлов
- 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
- 13.3. Электрический ток в газах. Виды газового разряда.
- Самостоятельный газовый разряд и его типы
- Лекция №14
- 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
- 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
- 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
- 14.4. Магнитный поток. Теорема Гаусса
- 14.5. Работа перемещения проводника и рамки с током в магнитном поле
- 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
- 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
- 14.8. Закон полного тока для магнитного поля в веществе
- 14.9. Виды магнетиков
- Лекция 15
- 15.1. Явление электромагнитной индукции.
- 15.2. Явление самоиндукции
- 15.3. Энергия магнитного поля
- 15.4. Электромагнитная теория Максвелла.
- 1) Первое уравнение Максвелла
- 2) Ток смешения. Второе уравнение Максвелла
- 3)Третье и четвертое уравнения Максвелла
- 4)Полная система уравнений Максвелла в дифференциальной форме
- 15.5. Переменный ток
- Лекция № 16
- 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
- 16.2. Отражение и преломление света на сферической поверхности. Линзы.
- 16.3. Основные фотометрические величины и их единицы
- 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
- 17.2. Способы получения интерференционных картин.
- 17.3. Интерференция в тонких пленках.
- 17.4. Просветление оптики
- 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
- 17.6. Дифракция Френеля от простейших преград.
- 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
- 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
- 17.9. Поляризация света. Естественный и поляризованный свет.
- 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
- 17.11.Поляризация при двойном лучепреломлении.
- 17.12. Вращение плоскости поляризации.
- 17.13. Дисперсия света. Поглощение (абсорбция) света.
- Лекция №18
- 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
- 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
- 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
- Лекция №19
- 19.2.Линейчатый спектр атома водорода.
- 19.3. Постулаты Бора. Опыты Франка и Герца.
- Лекция №20
- 20.1.Атомное ядро.
- 20.2.Ядерные силы.
- 20.3.Энергия связи ядер. Дефект массы.
- 20.4.Реакции деления ядер.
- 2.5.Термоядерный синтез.
- 20.6.Радиоактивность. Закон радиоактивного распада.
- План-график самостоятельной работы
- План-график проведения лабораторно-практических занятий
- Перечень вопросов для подготовки к коллоквиуму Механика
- Формулы
- Определения
- Вопросы к экзамену
- Правила и образец оформления лабораторной работы