logo search
Физика

10.1. Реальные газы, уравнение Ван-дер-Ваальса.

Состояние реального газа нельзя описать с помощью уравнения Менделеева – Клапейрона, справедливого только для идеальных газов. Однако, если ввести в это уравнение поправки на силы взаимодействия между молекулами и собственный объём молекул, то можно получить уравнение, описывающее состояние реального газа. Такое уравнение было предложено Ван-дер-Ваальсом в 1873 году. Рассмотрим схему получения уравнения Ван-дер-Ваальса из уравнения Менделеева - Клапейрона для одного моля молекул газа . Для перехода к уравнению состояния реального газа нужно учесть силы отталкивания, а, следовательно, собственный объём молекул. Для этого вводитсяпоправка на молярный объём (или силы отталкивания) b. В СИ b измеряется в . Тогда получим уравнение состояния одного моля газа, учитывающее силы отталкивания между молекулами в виде:. Отсюда. Если увеличивать давление, то при, следовательно,V=b . Отсюда виден физический смысл поправки b , заключающийся в том, что поправка на объём численно равна предельному объёму, который бы занял 1 моль реального газа при бесконечно большом давлении. Детальное рассмотрение даёт , то есть поправка на объём равна учетверённому объёму 1 моля молекул газа. Объём одной молекулы, считая её сферической, равен:. Молярный объём. Тогда поправка на объём выражена формулой:

(10-1)

Учтём силы притяжения между молекулами газа, которые вызывают уменьшение давления на стенки сосуда на величину Pi , которую называют внутренним давлением газа. Молекулы, находящиеся в поверхностном слое газа (их число обратно пропорционально объёму), притягиваются ближайшими молекулами внутри газа (их число тоже обратно пропорционально объёму), следовательно, P i ~ n2 , а значит, P i ~ V – 2 . Можно записать равенство:

(10-2)

Здесь a – поправка на давление или силы притяжения, она различна для разных газов и в СИ измеряется в . Поправкиa и b различны для разных газов. Учитывая обе поправки, получим: или. Это уравнение описывает состояние реального газа. Однако, чаще всего, его записывают аналогично уравнению состояния идеальных газов, тогда уравнение состояние реальных газов для одного моля молекул имеет вид:

(10-3)

Уравнение состояния реального газа – уравнение Ван-дер-Ваальса - для любого количества вещества будет иметь вид:

(10-4)