17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
Пространственной, или трехмерной, дифракционной решеткой называется такая оптически неоднородная среда, в которой неоднородности периодически повторяются при изменении всех трех пространственных координат.
Условия прохождения света через обычную дифракционную решетку периодически изменяются только в одном направлении, перпендикулярном к оси щели. Поэтому такую решетку называют одномерной.
Простейшую двумерную решетку можно получить, сложив две одномерные решетки так, чтобы их щели были взаимно перпендикулярны. Главные максимумы двумерной решетки должны одновременно удовлетворять условию максимума для каждой из решеток:
и ,
где φ - угол между направлением на главный максимум (направление луча) и нормалью к решетке; m – порядок дифракционного максимума.
Дифракционная картина представляет собой систему светлых пятен, расположенных в определенном порядке на плоскости экрана. Размеры этих пятен уменьшаются при увеличении числа щелей, а яркость возрастает. Такая же картина получается, если на одно стекло нанести ряд взаимно перпендикулярных полос.
Дифракция наблюдается также и на трехмерных структурах. Всякий монокристалл состоит из упорядоченно расположенных атомов (ионов), образующих пространственную трехмерную решетку (естественная пространственная решетка).
Период атомной решетки порядка ; длина волны света. При таких условиях никаких дифракционных явлений на атомных дифракционных решетках с видимым светом не будет. Нужно излучение с меньшей длиной волны, например рентгеновское. Для рентгеновских лучей кристаллы твердых тел являются идеальными дифракционными решетками.
В 1913 г. русский физик Г.В. Вульф и английские ученые отец и сын Генри и Лоуренс Брэгги, независимо друг от друга, предложили простой метод расчета дифракции рентгеновских лучей в кристаллах. Они полагали, что дифракцию рентгеновских лучей можно рассматривать как результат отражения рентгеновских лучей от плоскостей кристалла. Это отражение, в отличие от обычного, происходит лишь при таких условиях падения лучей на кристалл, которые соответствуют максимуму интерференции для лучей, отраженных от разных плоскостей.
Направим пучок рентгеновских лучей 1 и 2 на две соседние плоскости кристалла и(рис. 17.18).
Абсолютный показатель преломления всех веществ для рентгеновских лучей равен 1. Поэтому оптическая разность хода между лучами и
,
где θ – угол между падающими и отраженными лучами и плоскостью кристалла (угол скольжения).
Интерференционные максимумы должны удовлетворять условию Вульфа–Брэггов:
| , (m = 1, 2, 3, ... .). | (17-18) |
Рис. 17.18
Из формулы (17-18) видно, что дифракция будет наблюдаться лишь при . Т. е. при условиибудут отсутствовать дифракционные максимумы. Поэтомуусловие называют условием оптической однородности кристалла.
Из (17-18) следует, что наблюдение дифракционных максимумов возможно только при определенных соотношениях между λ и θ. Этот результат лежит в основе спектрального анализа рентгеновского излучения, так как длину волны определяют по известным d, m и измеренному на опыте углу.
Исследуя дифракцию рентгеновских лучей, можно решить и обратную задачу: если известна длина волны λ рентгеновских лучей, можно определить период кристаллической решетки d и ориентацию атомных плоскостей в пространстве. Эта идея была высказана немецким физиком М. Лауэ в 1912 г. и явилась существенным вкладом в развитие физики твердого тела.
- Кафедра физики
- Содержание
- Предисловие
- Методические рекомендации по изучению дисциплины
- Перечень
- 2. Краткий курс лекций
- 1.2. Кинематика материальной точки
- Лекция № 2
- 2.1. Первый закон Ньютона. Инерция, сила. Инерциальные системы отсчета.
- 2.2. Второй закон Ньютона. Масса.
- 2.3. Третий закон Ньютона.
- 2.4. Импульс. Закон сохранения импульса.
- 2.5. Силы в природе.
- 2.6. Реактивное движение. Уравнение движения тела переменной массы.
- 2.7. Работа и мощность
- 2.8. Энергия. Закон сохранения энергии
- Лекция № 3
- 3.1. Понятие абсолютно твердого тела. Поступательное и вращательное движение тела. Центр масс.
- 3.2. Момент силы.
- 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
- 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
- Лекция № 4
- 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
- 4.2. Уравнение неразрывности.
- 4.3. Уравнение Бернулли и выводы из него
- Лекция №5
- 5.1. Гармонические колебания.
- 5.2. Сложение гармонических колебаний.
- 5.3. Сложение перпендикулярных колебаний.
- 5.4. Дифференциальное уравнение колебаний.
- 5.5. Энергетические соотношения в колебательных процессах.
- 5.6. Колебания математического и физического маятников
- 5.7. Уравнение вынужденных колебаний. Резонанс
- Лекция №6
- 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
- 6.2. Энергия волны
- 6.3. Упругие волны в твердом теле
- Лекция №7
- 7.1. Основные положения мкт.
- Агрегатные состояния вещества
- 7.2. Опытные законы идеального газа
- Закон Авогадро
- 7.3. Уравнение состояния идеального газа
- 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
- 7.5. Закон Максвелла для распределения молекул по скоростям.
- 7.6. Барометрическая формула. Распределение Больцмана
- Лекция №8
- 8.2. Столкновения молекул и явления переноса в идеальном газе
- 8.3. Среднее число столкновений и среднее время свободного пробега молекул
- 8.4.Средняя длина свободного пробега молекул
- 8.5. Диффузия в газах
- 8.6. Вязкость газов
- 8.7. Теплопроводность газов
- 8.8. Осмос. Осмотическое давление
- Лекция №9
- 9.1.Распределение энергии по степеням свободы молекул
- 9.2. Внутренняя энергия
- 9.3. Работа газа при его расширении
- 9.4. Первое начало термодинамики
- 9.5. Теплоемкость. Уравнение Майера
- 9.6. Адиабатный процесс
- 9.7. Политропический процесс
- 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
- 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
- 9.10. Второе начало термодинамики и его статистический смысл.
- Лекция №10
- 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
- Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
- 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
- Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
- 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
- 10.4. Капиллярные явления
- 10.5. Твёрдые тела
- Дефекты в кристаллах
- Тепловые свойства кристаллов
- Жидкие кристаллы
- Лекция №11
- 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
- 11.2. Закон Кулона
- 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
- 11.4. Электрический диполь
- 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
- 11.6. Работа сил электростатического поля по перемещению зарядов.
- 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
- 11.7. Связь между напряженностью электрического поля и потенциалом
- 11.8. Типы диэлектриков. Поляризация диэлектриков.
- 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - смещения, - напряженности и - поляризованности
- 11.10. Проводники в электростатическом поле
- 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
- 11.12. Энергия заряженного проводника, системы проводников и конденсатора
- Лекция №12
- 12.1. Электрический ток. Сила и плотность тока.
- 12.2. Электродвижущая сила источника тока. Сторонние силы. Напряжение
- 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
- 12.4. Закон Ома для неоднородного участка цепи
- 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
- 12.6. Правила Кирхгофа
- Лекция №13
- 13.1. Классическая теория электропроводности металлов
- 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
- 13.3. Электрический ток в газах. Виды газового разряда.
- Самостоятельный газовый разряд и его типы
- Лекция №14
- 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
- 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
- 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
- 14.4. Магнитный поток. Теорема Гаусса
- 14.5. Работа перемещения проводника и рамки с током в магнитном поле
- 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
- 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
- 14.8. Закон полного тока для магнитного поля в веществе
- 14.9. Виды магнетиков
- Лекция 15
- 15.1. Явление электромагнитной индукции.
- 15.2. Явление самоиндукции
- 15.3. Энергия магнитного поля
- 15.4. Электромагнитная теория Максвелла.
- 1) Первое уравнение Максвелла
- 2) Ток смешения. Второе уравнение Максвелла
- 3)Третье и четвертое уравнения Максвелла
- 4)Полная система уравнений Максвелла в дифференциальной форме
- 15.5. Переменный ток
- Лекция № 16
- 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
- 16.2. Отражение и преломление света на сферической поверхности. Линзы.
- 16.3. Основные фотометрические величины и их единицы
- 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
- 17.2. Способы получения интерференционных картин.
- 17.3. Интерференция в тонких пленках.
- 17.4. Просветление оптики
- 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
- 17.6. Дифракция Френеля от простейших преград.
- 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
- 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
- 17.9. Поляризация света. Естественный и поляризованный свет.
- 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
- 17.11.Поляризация при двойном лучепреломлении.
- 17.12. Вращение плоскости поляризации.
- 17.13. Дисперсия света. Поглощение (абсорбция) света.
- Лекция №18
- 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
- 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
- 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
- Лекция №19
- 19.2.Линейчатый спектр атома водорода.
- 19.3. Постулаты Бора. Опыты Франка и Герца.
- Лекция №20
- 20.1.Атомное ядро.
- 20.2.Ядерные силы.
- 20.3.Энергия связи ядер. Дефект массы.
- 20.4.Реакции деления ядер.
- 2.5.Термоядерный синтез.
- 20.6.Радиоактивность. Закон радиоактивного распада.
- План-график самостоятельной работы
- План-график проведения лабораторно-практических занятий
- Перечень вопросов для подготовки к коллоквиуму Механика
- Формулы
- Определения
- Вопросы к экзамену
- Правила и образец оформления лабораторной работы