Увеличение срока службы и снижение стоимости солнечной электростанции
Срок службы ТЭС и АЭС составляет 30 – 40 лет, полупроводниковых СЭ превышает 50 лет, так как взаимодействие фотонов с атомами и электронами не приводит к деградации кристаллической структуры и изменению скорости поверхностной и обьемной рекомбинации не основных носителей заряда. Однако солнечные модули (СМ) имеют срок службы 20 в тропическом климате и 25 – в умеренном климате из-за старения полимерных материалов – этиленвини-лацета и тедлара, которые используются для герметизации СЭ в модуле. Для увеличения срока службы модуля необходимо исключить из его конструкции полимерные материалы. В новой конструкции солнечного модуля СЭ помещены в стеклопакет из двух листов стекла, соединенных по торцам пайкой или сваркой. Технология герметизации торцов гарантирует герметичность модуля в течение 50 лет. Для снижения температуры СЭ и оптических потерь внутренняя полость модуля заполнена кремнийорганической жидкостью.
Новая бесполимерная технология сборки солнечного модуля, разработанная во ВНИИЭСХ, была использована для создания эффективной вакуумной прозрачной теплоизоляции (ВПТИ), которая состоит из двух сваренных по торцам пластин стекла с вакуумным зазором 50 мкм. При наличии инфракрасного (ИК) покрытия на внутренней поверхности стекол сопротивление теплопередаче может быть увеличено в 10 раз по сравнению с одинарным остеклением зданий. Солнечные коллекторы с вакуумным остеклением будут нагревать воду не до 60 , а до 90 °С, т.е. из типа установок для горячего водоснабжения они переходят в новый тип установок – для отопления зданий. В теплицах и зимних садах потери энергии уменьшаются на 50 %. Облицовка южных фасадов зданий плитами вакуумной прозрачной теплоизоляции с селективным покрытием толщиной 12 мм превращает здание в гигантский солнечный коллектор, эквивалентный сооружению со стенами увеличенной толщины на 1 м кирпичной кладки.
Особенно эффективно использование ВПТИ в южных районах России и в республиках Бурятия, Якутия, где в условиях зимнего антициклона при температуре воздуха – 30 °С температура селективного покрытия ВПТИ толщиной 10 мм составляет + 30 °С. Использование ВПТИ в летние месяцы позволит на 50 % снизить затраты на кондиционирование зданий.
Стоимость установленного 1 кВт мощности составляет, дол: ГЭС – 1 000 – 2 500, ТЭС – 800 – 1 400, ВЭС – 800 – 3 000, АЭС – 2 000 – 3 000.
Основным компонентом современных СЭС, определяющим их стоимость, является солнечный модуль, изготовляемый из СЭ на основе кремния. Стоимость СЭС 1 000 дол/кВт прогнозируется достигнуть в 2020 г.
Основные пути снижения стоимости СЭС: повышение КПД СЭС, увеличение размеров СМ и объема производства, снижение стоимости солнечного кремния, уменьшение расхода солнечного кремния на единицу мощности СЭС, комбинированное производство электроэнергии и тепла на СЭС.
Максимальный размер солнечного модуля ограничен размерами стекла и составляет 2,5x3 м при электрической мощности 1 кВт. Объем производства СМ растет на 30 % в год, а их стоимость с 1976 г. снизилась в 10 раз.
В России разработана бесхлорная технология производства поликристаллического кремния стоимостью 15 дол/ кг, что в два раза ниже стоимости поликремния на европейском рынке.
- Предисловие
- 1. Сжигание топлив в кипящем слое
- 1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем
- 1.2. Топки с циркулирующим кипящим слоем
- 1.2.1. Отечественные котлы с циркулирующим кипящим слоем
- 1.2.2. Котлы с циркулирующим кипящим слоем под давлением
- 1.2.3.Зарубежные котлы с кипящим слоем (промышленный опыт)
- Котлы с кипящим слоем, эксплуатируемые в сша
- Применение котлов с цкс для сжигания сланцев
- 1.3. Сжигание твердых топлив с использованием аэрофонтанных предтопков
- 2. Плазменная технология
- 3. Разработка новых конструкций топочных камер для сжигания углей
- 3.1. Вихревые топки с жидким шлакоудалением
- 3.2. Принцип технологии вихревого низкотемпературного сжигания
- 3.2.1. Экономичность вир- технологии
- 3.2.2. Экологические показатели
- 3.2.3. Надежность и маневренность вир-технологии
- 3.2.4. Результаты испытаний модернизированного котла пк-38 (ст. № 3а) Назаровской грэс
- 3.3. Пылеугольный котел с кольцевой топкой для крупных энергоблоков
- 4. Термическая подготовка углей перед сжиганием в условиях тэс
- 4.1.Термическая подготовка углей в термоциклонных предтопках
- 4.2. Разработки эниНа
- 4.3. Работы Политехнического института сфу по применению предварительной термической подготовки углей в условиях тепловой электростанции
- 4.3.1. Разработка технологии сжигания с внутритопочной термической подготовкой углей
- 4.3.2.Принципиальные схемы термической подготовки углей для организации безмазутной растопки и подсветки факела топочных камер котлов
- 20, 21, 24, 25, 26, 29 – Щелевые зазоры; 22 – нижние торцы амбразур;
- 26, 27, 28, 29 – Зазоры
- 4.3.3. Опытно-промышленный образец муфельного предтопка на котле бкз-420 140 Красноярской тэц-2
- 4.3.4. Система термоподготовки для организации муфельной растопки котлов Томь-Усинской грэс
- 4.3.5. Универсальная горелка для котлов пк-40-1 Беловской грэс
- Птб при включении питателей пыли на муфеле:
- Птб при расшлаковке абразуры муфеля при работе в режиме основной горелки:
- 4.3.6. Универсальная всережимная горелка для котлов бкз-420-140 Красноярской грэс-2
- 5. Сжигание водотопливных суспензий
- 5.1. Современное состояние технологии сжигания водотопливных суспензий
- 5.2. Основные технологические характеристики водотопливных суспензий
- 5.3. Опыт применения водоугольных суспензий
- 5.4. Суспензионное топливо для мазутных тэс и котельных
- 5.5. Опыт применения водомазутных эмульсий на энергетических котлах тгмп-314 и тгм-96 тэц-23 оао «Мосэнерго»
- 5.6.Разработки научно-исследовательского и проектно-изыскательского института «Новосибирсктеплоэлектропроект» Сибирского энтц
- 5.7. Исследования мэи (Технический университет) по применению водомазутных эмульсий для улучшения технико-экономических и экологических характеристик котельных агрегатов
- 5.8. Технико-экономическая перспективаиспользования суспензионного угольного топлива
- 6. Гидравлические электрические станции
- 3 Сопло; 4 рабочее колесо; 5 кожух; 6 отклонитель; 7 лопасти (ковши); 8 нижний бьеф
- Состав и компоновка основных сооружений
- Плотины
- Типы и параметры гидрогенераторов
- Малые гэс
- 7. Геотермальная энергетика
- 7.1. Использование геотермальных ресурсов в мире
- 7.2. Геотермальные ресурсы России
- 7.3. Геотермальные энергетические технологии и оборудование России
- 1 Скважина; 2 бак-аккумулятор; 3 расширитель; 4 турбина; 5 генератор;
- 6 Градирня; 7 насос; 8 смешивающий конденсатор; 9, 10 насос
- 7.4. Российские бинарные энерготехнологии
- 7.4. Геотермальное теплоснабжение
- 7.5. Перспективы развития геотермальной энергетики России
- 7.6. Опытная геотермальная электростанция, основанная на цикле а.И.Калины
- 8. Ветроэнергетические установки
- 8.1. Состояние и перспективы развития мировой ветроэнергетики
- 8.2. Высотная ветроэнергетическая установка
- 8.3. Ветроэнергетика в заполярных условиях
- Основные направления развития ветроэнергетики в заполярных условиях
- Преимущества применения энергии ветра в заполярных и холодных климатических условиях
- Специфика развития ветроэнергетики и эксплуатации вэу при холодном климате
- Использование энергии ветра для отопления в условиях холодного и заполярного климата
- Новая ветро-дизельная электрическая установка
- 9. Альтернативные способы получения электроэнергии
- 9.1. Магнитогидродинамическое преобразование энергии
- 2 Сопло; 3 мгд-генератор; 4 место конденсации щелочных металлов; 5 насос; 6 место ввода щелочных металлов
- 9.2. Термоэлектрические генераторы
- 9.3. Изотопная энергетика
- 9.4. Термоэмиссионные генераторы
- 1 Катод; 2 анод
- 9.5. Электрохимические генераторы
- 3 Электролит; 4 анод
- 9.6. Использование морских возобновляемых ресурсов
- 9.6.1. Приливные электростанции
- Агрегаты пэс
- 9.6.2. Океанские гидроэлектростанции (огэс) на основе морских течений Физические основы работы огэс
- 9.6.3. Волновые электростанции
- 9.6.4. Использование тепловой энергии океана
- 9.7. Солнечная энергетика
- 9.7.1. Современное состояние солнечной энергетики
- Типы циркуляционных и гравитационных гелиоустановок:
- 9.7.2.Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
- 9.7.3. Разработка и испытания солнечно-топливной котельной в Краснодарском крае
- 9.7.4. Повышение эффективности преобразования солнечной энергии
- Повышение числа часов использования установленной мощности сэс
- Увеличение срока службы и снижение стоимости солнечной электростанции
- 9.8. Использование энергии термоядерных реакций
- 9.9. Комбинированные энергоустановки
- 9.10. Биоэнергетические установки
- 9.10.1. Вклад биотоплива в мировое производство энергии
- 9.10.2. Прямое сжигание
- 9.10.3. Пиролиз
- Газификация биомассы
- 9.10.5. Виды топлив, получаемых из биомассы
- 9.10.6. Перспективы развития биоэнергетики России с использованием древесины
- Прямое сжигание древесины Олонецкая теплостанция на древесных отходах
- Разработчик и изготовитель котла на биотопливе
- Принцип действия котла с колосниковой решеткой. Процесс горения и факторы, влияющие на него
- Циркуляция воды в котле
- Газогенераторные установки на древесине для получения тепловой и электрической энергии
- 9.11. Подземная газификация углей
- 9.14.1. Отечественный опыт подземной газификации угля
- Подземная газификация угля в г. Красноярске
- 9.15. Тепловые насосы
- 9.15.1. Перспективы применения тепловых насосов
- 9.15.2. Тепловые насосы в системах малой энергетики
- Заключение
- Библиографический список к главе 1
- К главе 2
- К главе 3
- К главе 4
- К главе 5
- К главе 6
- К главе 7
- К главе 8.
- К главе 9