9.14.1. Отечественный опыт подземной газификации угля
В России накоплен уникальный опыт по созданию и эксплуатации станций «Подземгаза», по промышленному производству генераторного газа в Донбассе, Подмосковье, Узбекистане и Кузбассе. Так, к 1960 г. на станциях «Подземгаза» было выработано более 5 млрд м3 газа, который использовался и как энергетическое топливо, и как химическое сырье. Позднее работы по ПГУ проводились с переменным успехом, что было связано с конъюнктурой в ТЭК страны, в частности с добычей относительно дешевых по тем временам природного газа и нефти. Тем не менее в конце 80-х – начале 90-х гг. были проведены работы по усовершенствованию технологии ПГУ и конструкций ПГГ. Было установлено, что теплотворная способность газа ПГУ существенно зависит от параметров дутья. Она увеличивается при использовании паровоздушного или парокислородного дутья, а также с повышением давления в каналах газификации. Далее было установлено, что на качество газа оказывает влияние точка подвода дутья (либо в устье дутьевой скважины, либо непосредственно в зону горения), способствуя лучшему контролю над процессом газификации и сохранению целостности реакционного канала, перемещающегося в угольном пласте.
В лаборатории подземной газификации углей ВНИИПРОМГАЗ под руководством А. Ф. Волка разработана методика инженерного расчета ПГГ, предложены перспективные по своим технико-экономическим показателям конструкции многоканальных ПГГ с длинными каналами газификации в полого и горизонтально залегающих угольных пластах. Один из вариантов многоканального
ПГГ (рис. 9.33) представляет собой систему параллельных эксплуатационных каналов, созданных с помощью наклонно-горизонтальных скважин 2, 3, которые подсекаются сбоечной наклонно-горизонтальной скважиной 4. Отдельный блок ПГГ состоит из двух дутьевых каналов (стрелки справа налево), обсаженных на всю длину трубами, и трех газоотводящих каналов (стрелки слева направо), обсадка которых производится лишь в их наклонной части 2, т.е. до входа в пласт 1. Сбойка каналов 3 и 4 осуществляется огневым способом с помощью розжиговых скважин 5, число которых зависит от свойств угольного пласта. Отвод газа из пласта на дневную поверхность рекомендуется осуществлять через вертикальные скважины 6, пробуренные на трассу газоотводящих каналов. Последнее решение, на наш взгляд, является спорным, поскольку бурение скважин 6 приводит к дополнительным затратам; более экономичным представляется вариант с отводом газа через ранее пробуренные наклонные скважины 2 (со стрелками слева направо).
В последние годы, несмотря на полное прекращение финансирования работ по ПГУ, отечественными учеными были разработаны новые конструктивные и технологические решения, направленные на повышение управляемости ПГУ, значительное сокращение количества эксплуатационных скважин. Все это позволило повысить конкурентоспособность ПГУ. Так, генераторный газ ПГГ в настоящее время в перерасчете на условное топливо на 25 – 35 % дешевле шахтного угля.
Рис. 9.33. – Принципиальная схема многоканального ПГГ
Зарубежный опыт подземной газификации угля.
Специалистами ведущих стран мира был успешно заимствован российский опыт создания и эксплуатации станций Подземгаза. Если в России со второй половины 90-х гг. и по настоящее время работы по ПГУ практически были прекращены, то за рубежом, наоборот, в этот период были проведены интенсивные теоретические и экспериментальные исследования.
В США с 1972 по 1989 гг. было проведено более 30 натурных экспериментов в различных горно-геологических условиях. Результатом проведенных полевых испытаний стало доведение теплотворной способности генераторного газа от 4 до 10 – 12 МДж/м3 при использовании парокислородного дутья. Хорошие результаты были получены при реализации принципа направленного подвода дутья непосредственно в огневую зону реакционного канала с помощью напорного трубопровода, перемещаемого вдоль этого канала в направлении от газоотводящей скважины к точке входа нагнетательной скважины в угольный пласт. Подобная технология ПГУ, названная американцами Crip (Крип), была применена при газификации крутопадающего угольного пласта на парокисло-родном дутье близ г. Ролинс (1981 г.), а также при газификации пологих угольных пластов «Роки Maym-im-l» (1988 г).
Рис. 9.33. – Схема опытного подземного газогенератора Теруэль (Испания):
1 – дутьевая скважина; 2 – горизонтальная скважина; 3 – дутьевая вертикальная скважина;
4 – угольный пласт
Страны Западной Европы (Германия, Бельгия, Франция. Великобритания и т. д.) также связывают свои надежды с ПГУ как альтернативой традиционным источникам энергоснабжения, работающим в большинстве своем на привозном топливе: нефти, природном и сжиженном газе. Так как в этих странах основные запасы угля залегают на большой глубине, создана специальная организация по разработке глубинной технологии ПГУ в рамках программы «Уголь второго поколения». В частности, Европейским союзом были проведены работы по изучению ПГУ в Бельгии (1978–1986) на глубине 1100 м, в Испании (1991–1998) отработана технология ПГУ на меньшей глубине – 500 м. В последнем случае в районе Теруэль на угольном пласте мощностью 2 м была реализована усовершенствованная американская технология Crip (рис. 9.34).
Улучшение коснулось метода розжига угольного пласта, согласно которому в напорной трубе устанавливалась газовая горелка с присоединенными к ней топливной и кислородной трубками. Кроме того, для опробования фильтрационно-огневого метода газификации угольного пласта на расстоянии 30 м от горизонтального бурового канала была пробурена вторая вертикальная дутьевая скважина. Основные результаты эксперимента: газификация на кислородном (95 – 98 % О2) дутье при давлении порядка 5,3 МПа позволяет получить генераторный газ с теплотворной способностью 10,9 МДж/м3
- Предисловие
- 1. Сжигание топлив в кипящем слое
- 1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем
- 1.2. Топки с циркулирующим кипящим слоем
- 1.2.1. Отечественные котлы с циркулирующим кипящим слоем
- 1.2.2. Котлы с циркулирующим кипящим слоем под давлением
- 1.2.3.Зарубежные котлы с кипящим слоем (промышленный опыт)
- Котлы с кипящим слоем, эксплуатируемые в сша
- Применение котлов с цкс для сжигания сланцев
- 1.3. Сжигание твердых топлив с использованием аэрофонтанных предтопков
- 2. Плазменная технология
- 3. Разработка новых конструкций топочных камер для сжигания углей
- 3.1. Вихревые топки с жидким шлакоудалением
- 3.2. Принцип технологии вихревого низкотемпературного сжигания
- 3.2.1. Экономичность вир- технологии
- 3.2.2. Экологические показатели
- 3.2.3. Надежность и маневренность вир-технологии
- 3.2.4. Результаты испытаний модернизированного котла пк-38 (ст. № 3а) Назаровской грэс
- 3.3. Пылеугольный котел с кольцевой топкой для крупных энергоблоков
- 4. Термическая подготовка углей перед сжиганием в условиях тэс
- 4.1.Термическая подготовка углей в термоциклонных предтопках
- 4.2. Разработки эниНа
- 4.3. Работы Политехнического института сфу по применению предварительной термической подготовки углей в условиях тепловой электростанции
- 4.3.1. Разработка технологии сжигания с внутритопочной термической подготовкой углей
- 4.3.2.Принципиальные схемы термической подготовки углей для организации безмазутной растопки и подсветки факела топочных камер котлов
- 20, 21, 24, 25, 26, 29 – Щелевые зазоры; 22 – нижние торцы амбразур;
- 26, 27, 28, 29 – Зазоры
- 4.3.3. Опытно-промышленный образец муфельного предтопка на котле бкз-420 140 Красноярской тэц-2
- 4.3.4. Система термоподготовки для организации муфельной растопки котлов Томь-Усинской грэс
- 4.3.5. Универсальная горелка для котлов пк-40-1 Беловской грэс
- Птб при включении питателей пыли на муфеле:
- Птб при расшлаковке абразуры муфеля при работе в режиме основной горелки:
- 4.3.6. Универсальная всережимная горелка для котлов бкз-420-140 Красноярской грэс-2
- 5. Сжигание водотопливных суспензий
- 5.1. Современное состояние технологии сжигания водотопливных суспензий
- 5.2. Основные технологические характеристики водотопливных суспензий
- 5.3. Опыт применения водоугольных суспензий
- 5.4. Суспензионное топливо для мазутных тэс и котельных
- 5.5. Опыт применения водомазутных эмульсий на энергетических котлах тгмп-314 и тгм-96 тэц-23 оао «Мосэнерго»
- 5.6.Разработки научно-исследовательского и проектно-изыскательского института «Новосибирсктеплоэлектропроект» Сибирского энтц
- 5.7. Исследования мэи (Технический университет) по применению водомазутных эмульсий для улучшения технико-экономических и экологических характеристик котельных агрегатов
- 5.8. Технико-экономическая перспективаиспользования суспензионного угольного топлива
- 6. Гидравлические электрические станции
- 3 Сопло; 4 рабочее колесо; 5 кожух; 6 отклонитель; 7 лопасти (ковши); 8 нижний бьеф
- Состав и компоновка основных сооружений
- Плотины
- Типы и параметры гидрогенераторов
- Малые гэс
- 7. Геотермальная энергетика
- 7.1. Использование геотермальных ресурсов в мире
- 7.2. Геотермальные ресурсы России
- 7.3. Геотермальные энергетические технологии и оборудование России
- 1 Скважина; 2 бак-аккумулятор; 3 расширитель; 4 турбина; 5 генератор;
- 6 Градирня; 7 насос; 8 смешивающий конденсатор; 9, 10 насос
- 7.4. Российские бинарные энерготехнологии
- 7.4. Геотермальное теплоснабжение
- 7.5. Перспективы развития геотермальной энергетики России
- 7.6. Опытная геотермальная электростанция, основанная на цикле а.И.Калины
- 8. Ветроэнергетические установки
- 8.1. Состояние и перспективы развития мировой ветроэнергетики
- 8.2. Высотная ветроэнергетическая установка
- 8.3. Ветроэнергетика в заполярных условиях
- Основные направления развития ветроэнергетики в заполярных условиях
- Преимущества применения энергии ветра в заполярных и холодных климатических условиях
- Специфика развития ветроэнергетики и эксплуатации вэу при холодном климате
- Использование энергии ветра для отопления в условиях холодного и заполярного климата
- Новая ветро-дизельная электрическая установка
- 9. Альтернативные способы получения электроэнергии
- 9.1. Магнитогидродинамическое преобразование энергии
- 2 Сопло; 3 мгд-генератор; 4 место конденсации щелочных металлов; 5 насос; 6 место ввода щелочных металлов
- 9.2. Термоэлектрические генераторы
- 9.3. Изотопная энергетика
- 9.4. Термоэмиссионные генераторы
- 1 Катод; 2 анод
- 9.5. Электрохимические генераторы
- 3 Электролит; 4 анод
- 9.6. Использование морских возобновляемых ресурсов
- 9.6.1. Приливные электростанции
- Агрегаты пэс
- 9.6.2. Океанские гидроэлектростанции (огэс) на основе морских течений Физические основы работы огэс
- 9.6.3. Волновые электростанции
- 9.6.4. Использование тепловой энергии океана
- 9.7. Солнечная энергетика
- 9.7.1. Современное состояние солнечной энергетики
- Типы циркуляционных и гравитационных гелиоустановок:
- 9.7.2.Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
- 9.7.3. Разработка и испытания солнечно-топливной котельной в Краснодарском крае
- 9.7.4. Повышение эффективности преобразования солнечной энергии
- Повышение числа часов использования установленной мощности сэс
- Увеличение срока службы и снижение стоимости солнечной электростанции
- 9.8. Использование энергии термоядерных реакций
- 9.9. Комбинированные энергоустановки
- 9.10. Биоэнергетические установки
- 9.10.1. Вклад биотоплива в мировое производство энергии
- 9.10.2. Прямое сжигание
- 9.10.3. Пиролиз
- Газификация биомассы
- 9.10.5. Виды топлив, получаемых из биомассы
- 9.10.6. Перспективы развития биоэнергетики России с использованием древесины
- Прямое сжигание древесины Олонецкая теплостанция на древесных отходах
- Разработчик и изготовитель котла на биотопливе
- Принцип действия котла с колосниковой решеткой. Процесс горения и факторы, влияющие на него
- Циркуляция воды в котле
- Газогенераторные установки на древесине для получения тепловой и электрической энергии
- 9.11. Подземная газификация углей
- 9.14.1. Отечественный опыт подземной газификации угля
- Подземная газификация угля в г. Красноярске
- 9.15. Тепловые насосы
- 9.15.1. Перспективы применения тепловых насосов
- 9.15.2. Тепловые насосы в системах малой энергетики
- Заключение
- Библиографический список к главе 1
- К главе 2
- К главе 3
- К главе 4
- К главе 5
- К главе 6
- К главе 7
- К главе 8.
- К главе 9