9.10.5. Виды топлив, получаемых из биомассы
Биоэтанол имеет следующие характеристики: формула С2 Н5 ОН, молекулярный вес 46,1 содержание С – 52,1, Н2 – 13,1, О2 – 34,7 % , С/Н = 4; стехиометрическое отношение (воздух/этанол) равно 9,0.
В 2002 г. в России из пищевого сырья получено 1,31 млн м3 биоэтанола, производство синтетического этанола составило 0,15 млн м3 , технического гидролизного этанола – 0,044 млн м3.
Россия располагает мощностями, позволяющими производить гидролизного спирта до 0,2 млн т/год. Однако гидролизные технологии, основанные на использовании серной кислоты, являются экологически вредными, поэтому необходимо разрабатывать современные экологически чистые технологии эффективного разложения древесины на целлюлозу (полимер глюкозы) и лигнин.
Для производства этанола в России могут быть использованы и другие виды сырья: меласса (отходы сахарного производства), свекла и свекловичный жом, картофельный крахмал, сладкое сорго.
Объем производства мелассы в 2004 г. составил 1,1 млн т. Из 100 кг мелассы можно получить 30 л этанола, а из 1,1 млн т – 330 000 тыс. м3 стоимостью 99 млн дол.
В 2003 г. было произведено 17,4 млн т свекловичного жома. Из него можно получить 380 тыс. м3 этанола. Таким образом, общий выход этанола из отходов производства сахара может составить 710 тыс. м3.
При получении этанола непосредственно из сахарной свеклы (в 2003 г. собрали 21,7 млн т) выход этанола мог бы составить 1,7 млн м3 при содержании сахара в ней 16 %. Стоимость такого объема этанола оценивается 510млн дол.
Другим источником крахмала для данного производства является картофель. Из 1 т картофеля (содержание крахмала 14 – 16 %) можно получить до 60 л биоэтанола. При урожае картофеля, равном 36,6 млн т, потенциальный объем полученного из него биоэтанола мог бы составить 2,2 млн м3. Картофель широко возделывается в России в регионах рискованного земледелия. Выращивание его для технических целей, например для производства этанола, может оказать существенное влияние на подъем экономики в этих областях. Для того чтобы производство биоэтанола в России достигло уровня его выработки в США, нужно засевать картофелем до 15 млн га/год. Потенциальным сырьем может стать также сладкое сорго, культивируемое на Северном Кавказе, Дальнем Востоке и в Поволжье. Урожайность сладкого сорго составляет 20 – 30 т/га. Из 1 т массы сорго можно получить 800 – 850 л сока с содержанием 20 % углеводов или 80 л биоэтанола (с 1 га – 2 м3 этанола).
Таким образом, перспективы развития производства транспортного этанола в России с последующим его экспортом достаточно оптимистичны. Однако очевидно, что основным сырьем должна стать древесина, что требует создания современных технологий ее разложения на лигнин и целлюлозу.
Биоэтанол можно получить из сахарной свеклы, сахарного тростника, кукурузы, пшеницы, картофеля, сладкого сорго, касавы [8]. Ниже приведены данные по производству биоэтанола.
Стоимость этанола в различных странах составляет [8], евро/м3:
Бразилия (95 % -ный спирт) 160
Бразилия (безводный спирт) 220
США (безводный спирт) 250
Европа (безводный спирт из сахарной свеклы 350 – 450
Импорт спирта в Европу 190
Мировая потенциальная потребность в этаноле равна 2 млрд т/год.
В настоящее время в мире производится 32 млн т/год этанола (пищевого 4, для химической промышленности 8, топливного 20 млн т/год); путем химического синтеза 7, брожением 93 %. При брожении 60 % этанола получают из сахарного тростника и сахарной свеклы, 40 % – из осахаренного крахмала зерна кукурузы или пшеницы.
В Бразилии в 1999 г. было произведено 6,5 млн т биотоплива, что обеспечило 13 % всех потребностей в энергоресурсах, 19 % потребностей в жидком топливе и позволило сэкономить 35,6 млрд дол. Для двигателей внутреннего сгорания используется смесь из 26 % этанола и 74 % бензина, а в дизельном топливе доля этанола составляет 3 %.
В настоящее время в Бразилии из сахарного тростника производится 13, а потребляется 12,6 млн т/год эталона. При этом необходимо отметить, что 1 баррель спирта стоит 25, а 1 баррель бензина – 35 дол.
Второе место в мире (после Бразилии) по производству биоэтанола занимают США: в 2003 г. выработано 5,5 млн т. Здесь 90 % биоэтанола получают из кукурузы, 8 % – из сорго. В 2004 г. производство биоэтанола в США составило 12,66 млн м3. На эти цели использовано 13 % урожая кукурузы. Конгресс США рассматривает законопроект, предусматривающий увеличение производства этого биотоплива в 3 раза.
В Калифорнии 70 % бензина, используемого на юге, и 57 % – на севере штата, смешивают с этанолом, так как введен запрет на применение метилтрибутилового эфира, соединение которого с бензином в двигателях внутреннего сгорания приводит к образованию вредных выбросов.
Добавление одной части этанола в бензин ведет к экономии трех частей нефти. Кроме того, спирт является единственным возобновляемым жидким топливом, использование которого в качестве добавок к бензину не требует изменения конструкции двигателей.
Планируется, что в ближайшее время потребление биоэтанола в США достигнет 19 млн т/год.
Кукуруза не является лучшим сырьем для производства биоэтанола, так как затраты при этом в два раза выше стоимости использованного топлива. Необходимо искать другие сырьевые источники. Например, предлагается производить биоэтанол из древесной целлюлозы – полимера глюкозы – или использовать традиционные источники сахарозы и крахмала: сахарную свеклу (меласса, свекольный жом), сахарный тростник (багасса), сладкое сорго, картофель и т.д.
Интерес представляет европейский проект «Сладкое сорго». В нем приводятся данные о том, что из сладкого сорго, собранного с 1 га, можно получить багассы (сухой) 15 т, зерна 5, сахара 7, листьев 1,88, корней 2,3 т, биоэтанола 3 – 5м3.
Прогнозируется, что к 2020 г. в мире будет произведено 120 млн т биоэтанола (в США и Канаде – 40 млн т).
Биоэтиптрибутиповый эфир (bio-etbe) получается смешиванием биоэтанола (48 % по объему) и третичного бутанола с последующим нагреванием в присутствии катализаторов (октановое число 112). Он используется в смеси с бензином для любых двигателей.
Биодизельное топливо – это продукт эфиризации (метилирования) растительных масел. В настоящее время в мире потребляется 145 л/чел в год дизельного топлива. Производство биодизельного топлива составляет, млн т/год: мировое 1,7, в странах Европейского союза 1,5 (в Восточной Европе 0,1), в США 0,07. Прогнозируется, что к 2020 г. мировое производство биодизельного топлива может составить 23 млн т/год.
В Европе для получения биодизельного топлива используется рапсовое масло (1,0 – 1,5 т/га). Оно метилируется метанолом (1 т масла + 100 кг метанола + 100 кг глицерина) и добавляется к дизельному топливу в количестве 5 %. Современные дизельные двигатели могут работать полностью на биодизельном топливе.
Биометанол может стать предпочтительным топливом для топливных элементов. Его получают из биосингаза или из смеси Н2 и СО, получаемых из биомассы в присутствии О2 (производство синтетического метанола составляет 27 млн т/год).
Биоводород. Один из методов его производства из биомассы – это ацетонобутиловое или бутиловое брожение сахарозы или крахмала. Ацетонобутиловое брожение (Cl. Acetobutylicim) сахарозы происходит по следующему механизму: 2 М глюкозы = 1 М бутанола + 1 М ацетона + 4 М водорода + 5 М СО2 (где М – молекула).
Из 1 т мелассы образуется 80 м3 водорода. С 1 га плантаций сахарной свеклы (мелассы) можно получить до 140 м3 водорода. Попутно из 1 т мелассы вырабатывается примерно 114 и 36 кг бутанола и ацетона, а из всего годичного объема мелассы – 125 и 40 тыс. т.
Из 1 т мелассы можно получить до 140 м3 водорода (из всей произведенной в 2003 г. мелассы – 154 млн куб. м водорода), а с 1 га плантаций сахарной свеклы – 245 м3.
В СССР до конца 70-х гг. XX в. работало четыре ацетонобутиловых завода: в городах Грозном, Нальчике, Талице (Свердловская обл.) и Ефремове (Тульская обл.). К концу 90-х годов остались заводы только в Грозном и Ефремове.
На заводе в Ефремове в сутки производилось до 50 т растворителей в соотношении бутанол: ацетон: этанол = 13:4:1 и до 29 тыс. м3 водорода (в год 15 тыс. т растворителей и до 8,7 млн м3 водорода), а в Грозном – 74 т растворителей и 43 тыс. куб. м водорода (в год 12,9 млн м3 водорода и до 22 тыс. т растворителей).
Весь образующийся водород выпускался в атмосферу, а углекислый газ использовался для производства жидкой и твердой углекислоты.
Ацетонобутиловый завод в Ефремове можно восстановить.
В 1967 г. на ацетонобутиловом заводе в Ефремове и в 1969 г. – в Грозном были введены в эксплуатацию цеха по выпуску кормового витамина В-12 методом термофильного метанового брожения барды (жидких отходов этих производств). Кроме витамина В-12 каждый цех производил биогаз до 30 тыс. м /сут, который использовался для получения тепловой энергии и полностью обеспечивал весь производственный цикл. При этом перерабатывалось барды 3 тыс. м3 /сут.
Для получения биоводорода из крахмала используются картофель и сорго. При ацетонобутиловом брожении из 1 т картофеля можно получить 25 м3 водорода, 340 кг бутанола и 110 кг ацетона (с 1 га картофельных плантаций – 875 м3 водорода, 12 т бутанола и 4 т ацетона); при бутиловом брожении из 1 т картофеля – 42 м3 водорода (с 1 га – 1 500).
Переработка 1 т стеблей сорго при ацетонобутиловом брожении дает до 30 м3 водорода, 114 кг бутанола и 40 кг ацетона, а при бутиловом брожении – 50 куб. м водорода (с 1 га плантаций сахарного сорго при ацетонобутиловом брожении – 900 м3 водорода, 3,4 т бутанола и 1,2 т ацетона, при бутиловом брожении —1 500 м3 водорода).
Получение биодизельного топлива. В России имеются возможности производства растительных масел для получения и экспорта биодизельного топлива. Основными природными источниками растительных масел являются подсолнечник, лен и горчица. Значительно меньше используются кукуруза, соя и рапс. Ведущее место занимает подсолнечник. В 2000 г. в России произведено более 4 млн т растительных масел.
Перспективным является расширение традиционного российского производства льна в средней полосе, а в южных регионах – подсолнечника, сои и рапса.
Достижения развитых и развивающихся стран в области производства и потребления биотоплив представляют значительный интерес как для решения локальных энергетических проблем в современной России, так и для выхода России в качестве крупного поставщика биотоплив на мировой и европейские рынки.
Биогаз (смесь 55 – 75 метана и 25–45 % СО2) получается путем метанового брожения биомассы (80 – 92 %-ной влажности). Его теплота сгорания составляет 21 – 29 МДж/кг (5000 – 7000 ккал/м3) и зависит от концентрации метана. Количество метана, в свою очередь, определяется биофизикохимическими особенностями сырья и в некоторых случаях применяемой технологией. Выход биогаза из 1 т абсолютно сухого вещества составляет, м3: 250 – 350 для отходов жизнедеятельности крупного рогатого скота, 400 – для отходов птицеводства, 300 – 600 – для различных видов растений, до 600 для отходов (барды) спиртовых и ацетонобутиловых заводов.
Ведущей страной по количеству крестьянских биогазовых установок является Китай (более 10 млн установок). Здесь в год производится около 7 млрд м3 биогаза, что обеспечивает топливом около 60 млн крестьян.
Среди промышленно развитых стран наиболее широко биогаз используется в Дании, где доля биогаза составляет до 18 % общего энергобаланса страны.
С 1987 по 1995 г. в Европе построено более 150 крупных промышленных биоэнергетических станций на базе использования биогаза. В 2001 г. в мире было введено в эксплуатацию свыше 1 000 биогазовых установок и станций, из них: 45 % – в Европе, 15 % – в США и далее следуют Бразилия, Китай, Индия и другие старны.
Значительная часть производимого биогаза используется для получения электрической энергии (48 – 104 кВт*ч на 1 т перерабатываемого сырья, как правило, органических отходов).
В провинции Онтарио (Канада) построен биогазовый завод по переработке 180 тыс. т/год ТБО и производству 25 млн м3 /год биогаза, который конвертируется в 5,5 МВт тепловой и электрической энергии и 60 тыс. т/год компоста.
К производству биогаза относится также получение лендфиллгаза. В настоящее время во многих странах создаются специальные инженерно обустроенные хранилища для ТБО с целью извлечения из них биогаза, используемого для производства электрической и тепловой энергии.
В мире лендфиллгаз применяется в энергооборудовании различных типов:
Количество, шт.
Газовые двигатели (двигатели внутреннего сгорания) 581
Газоводяные котлы 277
Тепловые электростанции 187
Газовые турбины 39
Системы выпаривания 17
Печи для обжига 14
В местечке Мон-Сант-Гуиберт (Бельгия) работает электростанция из 13 модулей, использующая биогаз. Она перерабатывает 300 тыс. т ТБО в год. Ее мощность составляет 9,5 МВт, мощность одного модуля 700 кВт. Скорость поступления лендфиллгаза (50 % метана) 5500 м3/ч.
В США к 2002 г. эксплуатировалось 350 заводов по производству лендфиллгаза, в Европе – 750. Всего в мире их 1152 общей электрической мощностью 3929 МВт; они перерабатывают 4548 млн т отходов в год; общая скорость выделения биогаза – 1,6 млн м3 /ч.
- Предисловие
- 1. Сжигание топлив в кипящем слое
- 1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем
- 1.2. Топки с циркулирующим кипящим слоем
- 1.2.1. Отечественные котлы с циркулирующим кипящим слоем
- 1.2.2. Котлы с циркулирующим кипящим слоем под давлением
- 1.2.3.Зарубежные котлы с кипящим слоем (промышленный опыт)
- Котлы с кипящим слоем, эксплуатируемые в сша
- Применение котлов с цкс для сжигания сланцев
- 1.3. Сжигание твердых топлив с использованием аэрофонтанных предтопков
- 2. Плазменная технология
- 3. Разработка новых конструкций топочных камер для сжигания углей
- 3.1. Вихревые топки с жидким шлакоудалением
- 3.2. Принцип технологии вихревого низкотемпературного сжигания
- 3.2.1. Экономичность вир- технологии
- 3.2.2. Экологические показатели
- 3.2.3. Надежность и маневренность вир-технологии
- 3.2.4. Результаты испытаний модернизированного котла пк-38 (ст. № 3а) Назаровской грэс
- 3.3. Пылеугольный котел с кольцевой топкой для крупных энергоблоков
- 4. Термическая подготовка углей перед сжиганием в условиях тэс
- 4.1.Термическая подготовка углей в термоциклонных предтопках
- 4.2. Разработки эниНа
- 4.3. Работы Политехнического института сфу по применению предварительной термической подготовки углей в условиях тепловой электростанции
- 4.3.1. Разработка технологии сжигания с внутритопочной термической подготовкой углей
- 4.3.2.Принципиальные схемы термической подготовки углей для организации безмазутной растопки и подсветки факела топочных камер котлов
- 20, 21, 24, 25, 26, 29 – Щелевые зазоры; 22 – нижние торцы амбразур;
- 26, 27, 28, 29 – Зазоры
- 4.3.3. Опытно-промышленный образец муфельного предтопка на котле бкз-420 140 Красноярской тэц-2
- 4.3.4. Система термоподготовки для организации муфельной растопки котлов Томь-Усинской грэс
- 4.3.5. Универсальная горелка для котлов пк-40-1 Беловской грэс
- Птб при включении питателей пыли на муфеле:
- Птб при расшлаковке абразуры муфеля при работе в режиме основной горелки:
- 4.3.6. Универсальная всережимная горелка для котлов бкз-420-140 Красноярской грэс-2
- 5. Сжигание водотопливных суспензий
- 5.1. Современное состояние технологии сжигания водотопливных суспензий
- 5.2. Основные технологические характеристики водотопливных суспензий
- 5.3. Опыт применения водоугольных суспензий
- 5.4. Суспензионное топливо для мазутных тэс и котельных
- 5.5. Опыт применения водомазутных эмульсий на энергетических котлах тгмп-314 и тгм-96 тэц-23 оао «Мосэнерго»
- 5.6.Разработки научно-исследовательского и проектно-изыскательского института «Новосибирсктеплоэлектропроект» Сибирского энтц
- 5.7. Исследования мэи (Технический университет) по применению водомазутных эмульсий для улучшения технико-экономических и экологических характеристик котельных агрегатов
- 5.8. Технико-экономическая перспективаиспользования суспензионного угольного топлива
- 6. Гидравлические электрические станции
- 3 Сопло; 4 рабочее колесо; 5 кожух; 6 отклонитель; 7 лопасти (ковши); 8 нижний бьеф
- Состав и компоновка основных сооружений
- Плотины
- Типы и параметры гидрогенераторов
- Малые гэс
- 7. Геотермальная энергетика
- 7.1. Использование геотермальных ресурсов в мире
- 7.2. Геотермальные ресурсы России
- 7.3. Геотермальные энергетические технологии и оборудование России
- 1 Скважина; 2 бак-аккумулятор; 3 расширитель; 4 турбина; 5 генератор;
- 6 Градирня; 7 насос; 8 смешивающий конденсатор; 9, 10 насос
- 7.4. Российские бинарные энерготехнологии
- 7.4. Геотермальное теплоснабжение
- 7.5. Перспективы развития геотермальной энергетики России
- 7.6. Опытная геотермальная электростанция, основанная на цикле а.И.Калины
- 8. Ветроэнергетические установки
- 8.1. Состояние и перспективы развития мировой ветроэнергетики
- 8.2. Высотная ветроэнергетическая установка
- 8.3. Ветроэнергетика в заполярных условиях
- Основные направления развития ветроэнергетики в заполярных условиях
- Преимущества применения энергии ветра в заполярных и холодных климатических условиях
- Специфика развития ветроэнергетики и эксплуатации вэу при холодном климате
- Использование энергии ветра для отопления в условиях холодного и заполярного климата
- Новая ветро-дизельная электрическая установка
- 9. Альтернативные способы получения электроэнергии
- 9.1. Магнитогидродинамическое преобразование энергии
- 2 Сопло; 3 мгд-генератор; 4 место конденсации щелочных металлов; 5 насос; 6 место ввода щелочных металлов
- 9.2. Термоэлектрические генераторы
- 9.3. Изотопная энергетика
- 9.4. Термоэмиссионные генераторы
- 1 Катод; 2 анод
- 9.5. Электрохимические генераторы
- 3 Электролит; 4 анод
- 9.6. Использование морских возобновляемых ресурсов
- 9.6.1. Приливные электростанции
- Агрегаты пэс
- 9.6.2. Океанские гидроэлектростанции (огэс) на основе морских течений Физические основы работы огэс
- 9.6.3. Волновые электростанции
- 9.6.4. Использование тепловой энергии океана
- 9.7. Солнечная энергетика
- 9.7.1. Современное состояние солнечной энергетики
- Типы циркуляционных и гравитационных гелиоустановок:
- 9.7.2.Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
- 9.7.3. Разработка и испытания солнечно-топливной котельной в Краснодарском крае
- 9.7.4. Повышение эффективности преобразования солнечной энергии
- Повышение числа часов использования установленной мощности сэс
- Увеличение срока службы и снижение стоимости солнечной электростанции
- 9.8. Использование энергии термоядерных реакций
- 9.9. Комбинированные энергоустановки
- 9.10. Биоэнергетические установки
- 9.10.1. Вклад биотоплива в мировое производство энергии
- 9.10.2. Прямое сжигание
- 9.10.3. Пиролиз
- Газификация биомассы
- 9.10.5. Виды топлив, получаемых из биомассы
- 9.10.6. Перспективы развития биоэнергетики России с использованием древесины
- Прямое сжигание древесины Олонецкая теплостанция на древесных отходах
- Разработчик и изготовитель котла на биотопливе
- Принцип действия котла с колосниковой решеткой. Процесс горения и факторы, влияющие на него
- Циркуляция воды в котле
- Газогенераторные установки на древесине для получения тепловой и электрической энергии
- 9.11. Подземная газификация углей
- 9.14.1. Отечественный опыт подземной газификации угля
- Подземная газификация угля в г. Красноярске
- 9.15. Тепловые насосы
- 9.15.1. Перспективы применения тепловых насосов
- 9.15.2. Тепловые насосы в системах малой энергетики
- Заключение
- Библиографический список к главе 1
- К главе 2
- К главе 3
- К главе 4
- К главе 5
- К главе 6
- К главе 7
- К главе 8.
- К главе 9