logo
ГОСы общее / шпоры печать от Сани / шпоры печать1

12.Регулируемый электропривод переменного тока с вентильным двигателем(вд)

Вентильный двигатель представляет собой единую систему, состоящую из синхронного двигателя СД и преобразователя частоты с промежуточным звеном постоянного тока или с непосредственной связью (НПЧ), вентили которого коммутируются в функции положения ротора или магнитного потока двигателя. Обмотка возбуждения двигателя располагается на роторе и питается от постороннего источника постоянного тока. Есть двигатели с возбуждением постоянными магнитами

Вентильный коммутатор, т.е. инвертор, управляемый в функции положения ротора, выполняет роль коллектора обычной машины постоянного тока. Он присоединяется к обмотке статора СД и осуществляет распределение постоянного тока с преобразованием его в переменный. Синхронный двигатель, работающий совместно с таким инвертором приобретает свойства машины постоянного тока и иногда его называют бесколлекторной машиной постоянного тока БМПТ или вентильным двигателем постоянного тока. Механические характеристики ВД аналогичны характеристикам двигателя постоянного тока с независимым возбуждением.

«+» ВД по сравнению с машиной постоянного тока – отсутствие коллектора, что повышает надежность, позволяет питать двигатель повышенным напряжением, следовательно, осуществлять бестрансформаторное подключение силовой части электропривода к сети.

Момент, возникающий в вентильном двигателе (как синхронной машине) подчиняется зависимости

, где

Р

П – число пар полюсов двигателя; – угол между осями полей статора и ротора (между векторами потокосцеплений, см. рисунок).СМ – постоянная момента (коэффициент пропорцио­наль­но­сти между током и моментом ВД,).Iм – максимальное мгновенное значение тока одной фазы статора.

Знак минус означает, что направление момента всегда противоположно направлению угла рассогласования .

С

целью ограничения изменений момента электронная система регулирования обеспечивает ограничение изменения угла в окрестностях 900 в диапазоне ±300 (в ту и другую сторону), как показано на угловой (моментной) характеристике СД. Именно такое регулирование и осуществляется тиристорным коммутатором, т.е. инвертором, в функции положения ротора. Физическое положение ротора определяется с помощью датчика положения ротора ДПР, находящегося на валу двигателя. Переключение фаз двигателя производится тиристорным коммутатором в функции сигналов ДПР.

Д

атчик положения ротора состоит из трех пар светофотодиодов, жестко привязанных к статору, в зазоре, между которыми вращается диск, закрепленный на валу ротора. На диске по его периметру имеются прорези. Число их определяется числом пар полюсов ВД. Угловая длина прорези на диске определяется как, а угловое расстояние между парами светофотодиодов как.

В

ыходные сигналы ДПР преобразуются схемой распределения в 120 градусные импульсы управления тиристорами, обеспечивая, таким образом, проводящее состояние каждому тиристору в течение 1200 за один период сигнала ДПР. Иначе говоря, при вращении ротора 3 пары светофотодиодов вырабатывают 3 последовательных импульса, сдвинутых во времени по отношению друг к другу на 1200. По передним фронтам этих импульсов осуществляется включение нечетных тиристоров коммутатора (первого, третьего, пятого), изображенного на схеме (применительно к электроприводу ЭПБ-1), а по задним фронтам – четных (второго, четвертого, шестого). Длительность включенного состояния тиристоров соответствует интервалу проводимости 1200. Коммутация тока происходит 6 раз за один период сигнала ДПР.

Алгоритм работы ДПР при одной паре полюсов можно проследить по схеме, указав в таблице последовательность включений тири­сторов. Во включенном состоянии одновременно находятся два тиристора из шести.

Изображенные на схеме транзисторные высокоамперные ключи КЛ1 и КЛ2 выполняют две независимые функции:

  1. О

    Проводящее состояние тири­сторов

    Направление тока через фазы статора

    V1 – V6

    A C

    V3 – V6

    B C

    V3 – V2

    B A

    V5 – V2

    C A

    V5 – V4

    C B

    V1 – V4

    A B

    беспечивают режим коммутации тока с тиристора на тиристор ввиду невозможности самостоятельного выключения тиристоров, т.к. поскольку тиристоры ТК в силовой схеме подключаются к источнику постоянного напряжения, то для их отключения и восстанов­ления ими запирающих свойств необходимо кратковременно разрывать силовую цепь ТК.

  2. Обеспечивают поддержание заданной величины тока через обмотки двигателя, т.е. участвуют в регулировании тока.

Функция коммутации тока с тиристора на тиристор выполняется путем полного отключения ТК от источника питания. Транзисторы КЛ1 и КЛ2 в этом случае закрываются, протекание тока I через тиристоры ТК прекращается, и они восстанавливают свои запирающие свойства, а реактивный ток iL двух фаз обмоток двигателя через два диода трехфазного выпрямительного моста возврата реактивной энергии замыкается на источник питания, перезаряжая его. Время обесточенного состояния ТК составляет  300 мкс.

Чтобы снизить пульсации момента ВД формируется соответствующий график изменения тока статора двигателя, пульсации которого обратны пульсациям момента, как изображено на следующих временных диаграммах.

П

ри регулировании тока используется три режима включения тиристоров (три режима работы ключей КЛ1 и КЛ2).

  1. Режим Р2, когда оба ключа включены.

  2. Режим Р1, когда в проводящем состоянии находится только один из ключей.

  3. Режим Р0, когда оба ключа выключены.

В режиме Р2 напряжение источника питания прикладывается к обмоткам статора .

Знак ''+'' соответствует двигательному режиму, знак ''-'' – тормозному. При любой скорости Uпит Eдв.

В режиме Р1, когда, например, замкнут КЛ1, а КЛ2 разомкнут, ток протекает через КЛ1, тиристор V3 фазы статора В, А, диод моста возврата реактивной энергии и снова КЛ1. При таком варианте две обмотки статора ВД являются замкнутыми на себя и такой режим является режимом динамического торможения, для которого уравнение равновесия ЭДС имеет вид: .

В режиме Р0 ток фаз статора протекает через мост возврата реактивной энергии, направленный навстречу источнику питания. Такой режим является режимом противовключения. Уравнение равновесия ЭДС:.

Во всех уравнениях rф - активное сопротивление двух фаз статора.

Р

егулирование тока осуществляется двумя комбинациями режимов включения ключом КЛ1 и КЛ2. В двигательном и тормозном режимах малых скоростей регулирование тока осуществляется согласно изображенному графику. В двигательном и тормозном режимах больших скоростей регулирование тока относи­тельно заданного значения осуществляется комбинацией режимов Р1, Р2, Р0, как показано на следующем графике.

П

ринципиальная схема вентильного двигателя с постоянными магнитами и структурной схемой автоматического управления представлена на следующем рисунке. Система управления привода в этой схеме построена по принципу подчиненного регулирования с последовательной коррекцией. Регулятор тока РТ воздействует на СУВ, изменяя ток и напряжение на входе инвертора УИ. Диапазон регулирования в данной схеме порядка 100%.

В вентильных двигателях средней и большой мощности при скоростях 1003000 об/мин часто используют СД обычной конст­рук­ции и естественную коммута­цию вентилей УИ (АИТ) в функции напряжения статора дви­гателя. Такие ВД применяются главным образом в приводах с мало- и медленно изменяющейся длительной нагрузкой. ВД на ско­рости 100 об/мин и 3000 об/мин не могут быть выполнены на основе СД обычной конструкции. Для ВД создаются СД специальных конструкций, в частности, бесщеточные с возбуждением постоянными магнитами. Они выполняются мощностью до 30кВт с максимальной скоростью 3000 об/мин, а также многополюсные тихоходные.

Бесконтактные (бесщеточные) СД мощностью от 30 до 200 кВт при 3000 об/мин выполняются с обмоткой возбуждения, расположенной на статоре. На статоре же располагается и трехфазная обмотка якоря. Ротор представляет безобмоточный магнитопровод, напоминающий зубчатое колесо, через зубцы которого замыкается магнитный поток обмотки возбуждения и якорной обмотки. Ротор вращается синхронно с полем, создаваемым током трехфазной обмотки статора, т.е. якоря.

Т.к. ВД обладает характеристиками машины постоянного тока независимого возбуждения, то все способы регулирования его угловой скорости характеризуются такими же показателями, что и у ДНВ, (изменением напряжения и тока возбуждения). Но в случае преобразователя частоты инверторного типа энергетические показатели регулирования у ВД хуже из-за двукратного преобразования энергии. Несколько хуже оказывается и стабильность скорости и, как следствие, меньше диапазон регулирования вниз от основной скорости, т.к. механические характеристики ВД мягче, чем у ДНВ той же мощности.

У ВД можно получить и характеристику двигателя последовательного возбуждения, если обмотку возбуждения включить последовательно в цепь выпрямленного тока на входе инвертора. Но в отличие от случая питания обычного двигателя последовательного возбуждения от сети постоянного тока, когда он не имеет конечной скорости идеального холостого хода 0 и не может работать в режиме с рекуперацией энергии в сеть, за счет применения системы подчиненного регулирования тиристорами управляемого выпрямителя УВ которая уменьшает напряжение на статоре (якоре) и ток в нем при снижении нагрузки, характеристики двигателя оказываются примерно такими же, как и у ДНВ с 0 и являются практически линейными. Возможен и генераторный режим с рекуперацией энергии в сеть. В этом случае УВ переводится в инверторный режим, а управляемый инвертор – в выпрямительный при 0.

Перспективно применение ВД для мощных тихоходных электроприводов, например, для шаровых мельниц, и сверхбыстроходных (до 10000 об/мин) сверхмощных электроприводов, например, нагнетателей, в шаговом электроприводе, в асинхронных электромеханических каскадах, станочном электроприводе, в многодвигательных регулируемых электроприводах с синхронной связью.