Уравнение состояния идеального газа
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона — Менделеева) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:
где
— давление,
— молярный объём,
— универсальная газовая постоянная
— абсолютная температура,К.
Так как , где — количество вещества, а , где — масса, — молярная масса, уравнение состояния можно записать:
Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.
В случае постоянной массы газа уравнение можно записать в виде:
Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:
— закон Бойля — Мариотта.
— Закон Гей-Люссака.
— закон Шарля (второй закон Гей-Люссака, 1808 г.)
С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:
1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:
— закон Бойля — Мариотта.
Закон Бойля — Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году.
В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме
p = (γ − 1)ρε,
где — показатель адиабаты, — внутренняя энергия единицы массы вещества.
Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.
С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.
С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение увеличивается.
42 Молекулярно-кинетическая теория
Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
все тела состоят из частиц: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
Основными доказательствами этих положений считались:
Диффузия
Броуновское движение
Изменение агрегатных состояний вещества
В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе — физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.
- 1 Основные кинематические величины
- 2 Движение по окружности
- 3 Криволинейное движение
- 4 Законы Ньютона
- Первый закон Ньютона
- Современная формулировка
- Историческая формулировка
- Второй закон Ньютона
- Современная формулировка
- Историческая формулировка
- Третий закон Ньютона
- Современная формулировка
- Историческая формулировка
- Комментарии к законам Ньютона Сила инерции
- Законы Ньютона и Лагранжева механика
- Решение уравнений движения
- 5 Принцип независимости действия сил
- Момент импульса в классической механике
- Определение
- Вычисление момента
- 8 Центр масс
- Определение
- Центры масс однородных фигур
- В механике
- Центр масс в релятивистской механике
- Центр тяжести
- 9 Степени свободы (механика)
- Примеры
- Движение и размерности
- Системы тел
- Определение степеней свободы механизмов
- 10 Момент силы
- Общие сведения
- Предыстория
- Единицы
- Специальные случаи Формула момента рычага
- Определение
- Вычисление момента
- Сохранение углового момента
- 11 Динамика твердого тела
- ***Можно не читать!***Динамика твердого тела
- 12 Момент инерции
- Теорема Гюйгенса-Штейнера
- Осевые моменты инерции некоторых тел
- Центральный момент инерции
- 13 Теорема Штейнера
- Работа силы
- 15 Работа - потенциальная сила
- Работа силы (сил) над одной точкой
- Работа силы (сил) над системой или неточечным телом
- Кинетическая энергия
- История
- Физический смысл
- Физический смысл работы
- Релятивизм
- Соотношение кинетической и внутренней энергии
- Потенциальная энергия
- О физическом смысле понятия потенциальной энергии
- Физическая абстракция
- Абсолютно упругий удар
- Абсолютно неупругий удар
- Реальный удар
- Гидростатическое давление
- Дифференциальное уравнение Бернулли
- Сила вязкого трения
- Вторая вязкость
- Вязкость жидкостей Динамический коэффициент вязкости
- Кинематическая вязкость
- Ньютоновские и неньютоновские жидкости
- Относительная вязкость
- Ламинарный и турбулентный режим течения жидкости
- Вязкость. Ламинарные и турбулентные режимы течения
- Траектория материальной точки
- Описание траектории
- Связь со скоростью и нормальным ускорением
- Связь с уравнениями динамики
- Траектория свободной материальной точки
- Движение под действием внешних сил в инерциальной системе отсчёта
- Движение под действием внешних сил в неинерциальной системе отсчёта
- Сила инерции
- Терминология
- Реальные и фиктивные силы
- Эйлеровы силы инерции
- Ньютоновы силы инерции
- Д’Аламберовы силы инерции
- Сила инерции на поверхности Земли
- Силы Второй закон Ньютона
- Третий закон Ньютона
- Движение в инерциальной со
- Движение в неинерциальной со
- Общий подход к нахождению сил инерции
- Движение тела по произвольной траектории в неинерциальной со
- Работа фиктивных сил инерции
- Существование инерциальных систем отсчёта
- Эквивалентность сил инерции и гравитации
- Принцип относительности
- История
- Специальная теория относительности
- Создание сто
- Основные понятия и постулаты сто
- Основные понятия
- Синхронизация времени
- Линейность преобразований
- Согласование единиц измерения
- Изотропность пространства
- Принцип относительности
- Постулат постоянства скорости света
- ***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- Преобразования Лоренца
- Преобразования Лоренца в физике
- Вид преобразований при коллинеарных (параллельных) пространственных осях
- Вывод преобразований
- Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- Преобразования Лоренца в матричном виде
- Свойства преобразований Лоренца
- Следствия преобразований Лоренца Изменение длины
- Относительность одновременности
- Замедление времени для движущихся тел Связанные определения
- История
- Лоренцево сокращение
- Строгое определение
- Объяснение
- Толкование
- Значение для физики
- Относительность промежутков времени
- Интервал (теория относительности)
- Определение
- Инвариантность интервала в специальной теории относительности Используемые постулаты
- Доказательство
- Смысл знака квадрата интервала
- Релятивистская механика
- Общие принципы
- Второй закон Ньютона в релятивистской механике
- Функция Лагранжа свободной частицы в релятивистской механике
- Релятивистская частица как неголономная система
- Эквивалентность массы и энергии
- Масса покоя как вид энергии
- Понятие релятивистской массы
- Гравитационное взаимодействие
- Предельный случай безмассовой частицы
- Количественные соотношения между массой и энергией
- Примеры взаимопревращения энергии покоя и кинетической энергии
- Термодинамическая система
- Описание
- Классификация
- Термодинамические системы
- Тепловой процесс
- Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- 4.2.4.Адиабатный процесс
- 4.2.5. Политропный процесс
- Термодинамические величины
- Функции состояния
- Функции процесса
- Идеальный газ
- Классический идеальный газ
- Применение теории идеального газа Физический смысл температуры газа
- Распределение Больцмана
- Адиабатический процесс
- Уравнение состояния идеального газа
- Основное уравнение мкт
- Вывод основного уравнения мкт
- Уравнение среднеквадратичной скорости молекулы
- Асчёт скорости движения молекул. Введение. Температура, как мера средней кинетической энергии молекул
- Среднеквадратичная скорость движения молекул.
- Распределение Максвелла
- Распределение Максвелла Распределение по вектору импульса
- Границы применимости
- Условия классического рассмотрения
- Барометрическая формула
- Закон Стефана — Больцмана
- Теплопроводность
- Закон теплопроводности Фурье
- Коэффициент теплопроводности вакуума
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ