5 Принцип независимости действия сил
Если на материальную точку действуют несколько сил, то
| (3.3) |
где - ускорение материальной точки, вызываемое действием на нее одной силы . Таким образом, если на материальную точку одновременно действуют несколько сил, то каждая из них сообщает м.т. такое же ускорение, как если бы других сил не было. Это утверждение называется принципом независимости действия сил.
6 5. Система материальных точек. Силы внешние и внутренние. Импульс системы материальных точек. Закон сохранения импульса.
Рассмотрим простейшую замкнутую (Замкнутой называют такую систему тел, на которую не действуют внешние тела (силы), и тела которой взаимодействуют лишь между собой, посредством сил, называемых внутренними.) систему из двух материальных точек. Исходя из смысла силы как быстроты изменения импульса, третий закон Ньютона можно записать в виде:
dР1/dt = - dР2/dt Þ dР1 = - dР2 Þ d(Р1 + Р2) = 0 Þ Р1 + Р2 = const
Полученное равенство выражает собой закон сохранения импульса (ЗСИ) замкнутой системы из двух материальных точек, т. е. точек, взаимодействующих лишь между собой. Общий (суммарный, результирующий) импульс двух тел остается при их движении постоянным, и может при их движении лишь перераспределяться между ними.
Движение может лишь передаваться от одних тел к другим, так что общее его количество в замкнутой системе тел остается неизменным, то есть сохраняется. Полученный выше для двух точек закон сохранения импульса легко обобщается на замкнутую систему из произвольного числа N материальных точек, и его можно сформулировать так: при любом движении замкнутой системы материальных точек полный её импульс остаётся неизменным: SРi = const; внутри системы возможны лишь перераспределения импульса между отдельными точками.
Рассмотрим систему из n материальных точек. Запишем второй закон Ньютона для i - ой точки: dРi/dt = Fi. Результирующую силу Fi, действующую на i - ую точку системы представим в виде суммы внешних и внутренних сил: Fi = Fi внеш + SFik , где Fik – внутренняя сила, действующая на i - ую точку системы со стороны ее k – ой точки. Полученное равенство dРi/dt = Fi внеш + SFik, выражающее второй закон Ньютона для i - ой точки системы, просуммируем по всем ее n точкам: SdРi/dt = SFi внеш + SSFik. По третьему закону Ньютона силы воздействия i - ой и k – ой точек друг на друга равны по величине и противоположны по направлению, то есть Fik = - Fki. Поэтому при суммировании внутренних сил по всем точкам системы они взаимно скомпенсируют друга, так что SSFik = 0. Тогда второй закон Ньютона для системы материальных точек запишется в виде: SdРi/dt = d/dtSРi = dРS/dt = SFi внеш = FS внеш. Или окончательно dРS/dt = FS внеш
Если система замкнута, то есть результирующая действующих на нее внешних сил равная нулю: FS внеш = 0, то dРS/dt = 0, откуда следует РS = SРi = const – закон сохранения импульса замкнутой системы материальных точек.
Сохранение импульса - величины векторной - означает сохранение и любой его составляющей, проекции на любую ось, любое направление в пространстве. В конкретных задачах динамики векторный закон сохранения импульса записывают в скалярной форме, проецируя его на соответствующие направления.
Закон сохранения импульса является эффективным средством, методом решения основной задачи механики (ОЗМ), т. к. он выражает собой взаимосвязь мер (количеств) движения взаимодействующих тел. Особенно плодотворным его применение оказывается для кратковременных взаимодействий типа удара, взрыва-разрыва, выброса тел, где трудно задать характер сил, то есть использовать подход к решению ОЗМ с непосредственным использованием законов Ньютона. Зная, например, импульсы Р1 и Р2 двух тел до удара и импульс Рi¢ одного из тел после удара, можно, пользуясь законом сохранения импульса, рассчитать импульс другого тела после удара.
7 Момент импульса
Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно - если в задаче есть центральная или осевая симметрия, но не только в этих случаях).
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент импульса замкнутой системы сохраняется.
- 1 Основные кинематические величины
- 2 Движение по окружности
- 3 Криволинейное движение
- 4 Законы Ньютона
- Первый закон Ньютона
- Современная формулировка
- Историческая формулировка
- Второй закон Ньютона
- Современная формулировка
- Историческая формулировка
- Третий закон Ньютона
- Современная формулировка
- Историческая формулировка
- Комментарии к законам Ньютона Сила инерции
- Законы Ньютона и Лагранжева механика
- Решение уравнений движения
- 5 Принцип независимости действия сил
- Момент импульса в классической механике
- Определение
- Вычисление момента
- 8 Центр масс
- Определение
- Центры масс однородных фигур
- В механике
- Центр масс в релятивистской механике
- Центр тяжести
- 9 Степени свободы (механика)
- Примеры
- Движение и размерности
- Системы тел
- Определение степеней свободы механизмов
- 10 Момент силы
- Общие сведения
- Предыстория
- Единицы
- Специальные случаи Формула момента рычага
- Определение
- Вычисление момента
- Сохранение углового момента
- 11 Динамика твердого тела
- ***Можно не читать!***Динамика твердого тела
- 12 Момент инерции
- Теорема Гюйгенса-Штейнера
- Осевые моменты инерции некоторых тел
- Центральный момент инерции
- 13 Теорема Штейнера
- Работа силы
- 15 Работа - потенциальная сила
- Работа силы (сил) над одной точкой
- Работа силы (сил) над системой или неточечным телом
- Кинетическая энергия
- История
- Физический смысл
- Физический смысл работы
- Релятивизм
- Соотношение кинетической и внутренней энергии
- Потенциальная энергия
- О физическом смысле понятия потенциальной энергии
- Физическая абстракция
- Абсолютно упругий удар
- Абсолютно неупругий удар
- Реальный удар
- Гидростатическое давление
- Дифференциальное уравнение Бернулли
- Сила вязкого трения
- Вторая вязкость
- Вязкость жидкостей Динамический коэффициент вязкости
- Кинематическая вязкость
- Ньютоновские и неньютоновские жидкости
- Относительная вязкость
- Ламинарный и турбулентный режим течения жидкости
- Вязкость. Ламинарные и турбулентные режимы течения
- Траектория материальной точки
- Описание траектории
- Связь со скоростью и нормальным ускорением
- Связь с уравнениями динамики
- Траектория свободной материальной точки
- Движение под действием внешних сил в инерциальной системе отсчёта
- Движение под действием внешних сил в неинерциальной системе отсчёта
- Сила инерции
- Терминология
- Реальные и фиктивные силы
- Эйлеровы силы инерции
- Ньютоновы силы инерции
- Д’Аламберовы силы инерции
- Сила инерции на поверхности Земли
- Силы Второй закон Ньютона
- Третий закон Ньютона
- Движение в инерциальной со
- Движение в неинерциальной со
- Общий подход к нахождению сил инерции
- Движение тела по произвольной траектории в неинерциальной со
- Работа фиктивных сил инерции
- Существование инерциальных систем отсчёта
- Эквивалентность сил инерции и гравитации
- Принцип относительности
- История
- Специальная теория относительности
- Создание сто
- Основные понятия и постулаты сто
- Основные понятия
- Синхронизация времени
- Линейность преобразований
- Согласование единиц измерения
- Изотропность пространства
- Принцип относительности
- Постулат постоянства скорости света
- ***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- Преобразования Лоренца
- Преобразования Лоренца в физике
- Вид преобразований при коллинеарных (параллельных) пространственных осях
- Вывод преобразований
- Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- Преобразования Лоренца в матричном виде
- Свойства преобразований Лоренца
- Следствия преобразований Лоренца Изменение длины
- Относительность одновременности
- Замедление времени для движущихся тел Связанные определения
- История
- Лоренцево сокращение
- Строгое определение
- Объяснение
- Толкование
- Значение для физики
- Относительность промежутков времени
- Интервал (теория относительности)
- Определение
- Инвариантность интервала в специальной теории относительности Используемые постулаты
- Доказательство
- Смысл знака квадрата интервала
- Релятивистская механика
- Общие принципы
- Второй закон Ньютона в релятивистской механике
- Функция Лагранжа свободной частицы в релятивистской механике
- Релятивистская частица как неголономная система
- Эквивалентность массы и энергии
- Масса покоя как вид энергии
- Понятие релятивистской массы
- Гравитационное взаимодействие
- Предельный случай безмассовой частицы
- Количественные соотношения между массой и энергией
- Примеры взаимопревращения энергии покоя и кинетической энергии
- Термодинамическая система
- Описание
- Классификация
- Термодинамические системы
- Тепловой процесс
- Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- 4.2.4.Адиабатный процесс
- 4.2.5. Политропный процесс
- Термодинамические величины
- Функции состояния
- Функции процесса
- Идеальный газ
- Классический идеальный газ
- Применение теории идеального газа Физический смысл температуры газа
- Распределение Больцмана
- Адиабатический процесс
- Уравнение состояния идеального газа
- Основное уравнение мкт
- Вывод основного уравнения мкт
- Уравнение среднеквадратичной скорости молекулы
- Асчёт скорости движения молекул. Введение. Температура, как мера средней кинетической энергии молекул
- Среднеквадратичная скорость движения молекул.
- Распределение Максвелла
- Распределение Максвелла Распределение по вектору импульса
- Границы применимости
- Условия классического рассмотрения
- Барометрическая формула
- Закон Стефана — Больцмана
- Теплопроводность
- Закон теплопроводности Фурье
- Коэффициент теплопроводности вакуума
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ