Эквивалентность массы и энергии
Эквивале́нтность ма́ссы и эне́ргии — физическая концепция, согласно которой масса тела является мерой энергии, заключённой в нём. Энергия тела равна массе тела, умноженной на размерный множитель квадрата скорости света в вакууме:
где E — энергия тела, m — его масса, c — скорость света в вакууме, равная 299 792 458 м/с.
Данная концепция может быть интерпретирована двояко:
с одной стороны, концепция означает, что масса неподвижного тела (так называемая масса покоя) является мерой внутренней энергии этого тела[1];
с другой стороны, можно утверждать, что любому виду энергии соответствует некая масса. Например, было введено понятие релятивистской массы как характеристики кинетической энергии движущегося тела.
В современной теоретической физике концепцию эквивалентности массы и энергии обычно используют в первом смысле. Главной причиной, почему приписывание массы любому виду энергии считается неудачным, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого принципа может запутывать и в конечном итоге не является оправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорят о массе, имеют в виду массу покоящегося тела. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. При этом под этим термином понимается увеличение инертных свойств движущегося тела.
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.
В современной культуре формула E = mc2 является едва ли не самой известной из всех физических формул, что обуславливается её связью с устрашающей мощью атомного оружия. Кроме того, именно эта формула является символом теории относительности и широко используется популяризаторами науки.
- 1 Основные кинематические величины
- 2 Движение по окружности
- 3 Криволинейное движение
- 4 Законы Ньютона
- Первый закон Ньютона
- Современная формулировка
- Историческая формулировка
- Второй закон Ньютона
- Современная формулировка
- Историческая формулировка
- Третий закон Ньютона
- Современная формулировка
- Историческая формулировка
- Комментарии к законам Ньютона Сила инерции
- Законы Ньютона и Лагранжева механика
- Решение уравнений движения
- 5 Принцип независимости действия сил
- Момент импульса в классической механике
- Определение
- Вычисление момента
- 8 Центр масс
- Определение
- Центры масс однородных фигур
- В механике
- Центр масс в релятивистской механике
- Центр тяжести
- 9 Степени свободы (механика)
- Примеры
- Движение и размерности
- Системы тел
- Определение степеней свободы механизмов
- 10 Момент силы
- Общие сведения
- Предыстория
- Единицы
- Специальные случаи Формула момента рычага
- Определение
- Вычисление момента
- Сохранение углового момента
- 11 Динамика твердого тела
- ***Можно не читать!***Динамика твердого тела
- 12 Момент инерции
- Теорема Гюйгенса-Штейнера
- Осевые моменты инерции некоторых тел
- Центральный момент инерции
- 13 Теорема Штейнера
- Работа силы
- 15 Работа - потенциальная сила
- Работа силы (сил) над одной точкой
- Работа силы (сил) над системой или неточечным телом
- Кинетическая энергия
- История
- Физический смысл
- Физический смысл работы
- Релятивизм
- Соотношение кинетической и внутренней энергии
- Потенциальная энергия
- О физическом смысле понятия потенциальной энергии
- Физическая абстракция
- Абсолютно упругий удар
- Абсолютно неупругий удар
- Реальный удар
- Гидростатическое давление
- Дифференциальное уравнение Бернулли
- Сила вязкого трения
- Вторая вязкость
- Вязкость жидкостей Динамический коэффициент вязкости
- Кинематическая вязкость
- Ньютоновские и неньютоновские жидкости
- Относительная вязкость
- Ламинарный и турбулентный режим течения жидкости
- Вязкость. Ламинарные и турбулентные режимы течения
- Траектория материальной точки
- Описание траектории
- Связь со скоростью и нормальным ускорением
- Связь с уравнениями динамики
- Траектория свободной материальной точки
- Движение под действием внешних сил в инерциальной системе отсчёта
- Движение под действием внешних сил в неинерциальной системе отсчёта
- Сила инерции
- Терминология
- Реальные и фиктивные силы
- Эйлеровы силы инерции
- Ньютоновы силы инерции
- Д’Аламберовы силы инерции
- Сила инерции на поверхности Земли
- Силы Второй закон Ньютона
- Третий закон Ньютона
- Движение в инерциальной со
- Движение в неинерциальной со
- Общий подход к нахождению сил инерции
- Движение тела по произвольной траектории в неинерциальной со
- Работа фиктивных сил инерции
- Существование инерциальных систем отсчёта
- Эквивалентность сил инерции и гравитации
- Принцип относительности
- История
- Специальная теория относительности
- Создание сто
- Основные понятия и постулаты сто
- Основные понятия
- Синхронизация времени
- Линейность преобразований
- Согласование единиц измерения
- Изотропность пространства
- Принцип относительности
- Постулат постоянства скорости света
- ***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- Преобразования Лоренца
- Преобразования Лоренца в физике
- Вид преобразований при коллинеарных (параллельных) пространственных осях
- Вывод преобразований
- Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- Преобразования Лоренца в матричном виде
- Свойства преобразований Лоренца
- Следствия преобразований Лоренца Изменение длины
- Относительность одновременности
- Замедление времени для движущихся тел Связанные определения
- История
- Лоренцево сокращение
- Строгое определение
- Объяснение
- Толкование
- Значение для физики
- Относительность промежутков времени
- Интервал (теория относительности)
- Определение
- Инвариантность интервала в специальной теории относительности Используемые постулаты
- Доказательство
- Смысл знака квадрата интервала
- Релятивистская механика
- Общие принципы
- Второй закон Ньютона в релятивистской механике
- Функция Лагранжа свободной частицы в релятивистской механике
- Релятивистская частица как неголономная система
- Эквивалентность массы и энергии
- Масса покоя как вид энергии
- Понятие релятивистской массы
- Гравитационное взаимодействие
- Предельный случай безмассовой частицы
- Количественные соотношения между массой и энергией
- Примеры взаимопревращения энергии покоя и кинетической энергии
- Термодинамическая система
- Описание
- Классификация
- Термодинамические системы
- Тепловой процесс
- Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- 4.2.4.Адиабатный процесс
- 4.2.5. Политропный процесс
- Термодинамические величины
- Функции состояния
- Функции процесса
- Идеальный газ
- Классический идеальный газ
- Применение теории идеального газа Физический смысл температуры газа
- Распределение Больцмана
- Адиабатический процесс
- Уравнение состояния идеального газа
- Основное уравнение мкт
- Вывод основного уравнения мкт
- Уравнение среднеквадратичной скорости молекулы
- Асчёт скорости движения молекул. Введение. Температура, как мера средней кинетической энергии молекул
- Среднеквадратичная скорость движения молекул.
- Распределение Максвелла
- Распределение Максвелла Распределение по вектору импульса
- Границы применимости
- Условия классического рассмотрения
- Барометрическая формула
- Закон Стефана — Больцмана
- Теплопроводность
- Закон теплопроводности Фурье
- Коэффициент теплопроводности вакуума
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ