logo
Физика ЭКЗАМЕН

Ламинарный и турбулентный режим течения жидкости

Знаменитый русский ученый Д. И. Менделеев в своем сочинении «О сопротивлении жидкостей и о воздухоплавании» в 1880 г. указывал на существование в природе двух режимов движения жидкости с различными законами ее сопротивления. Эта же мысль была развита и доказана в 1883 г. русским физиком Н. П. Петровым (1836—1920), впервые установившим, что при смазке силы трения, определяемые вязким сопротивлением при ламинарном движении, пропорциональны первой степени скорости. Петрову принадлежат также доказательство гипотезы Ньютона о силе внутреннего трения в жидкостях и разработка гидродинамической теории смазки.

Несколькими годами позже английский ученый Рейнольде провел свои опыты, наглядно подтверждавшие гипотезу Менделеева о существовании ламинарного и турбулентного движения жидкости.

Имеют место два различных по своему характеру режима движения жидкости: ламинарный и турбулентный.

При ламинарном режиме жидкость движется слоями без поперечного перемешивания, причем пульсации скорости и давления отсутствуют.

При турбулентном режиме слоистость нарушается, движение жидкости сопровождается перемешиванием и пульсациями скорости и давления.

Критерием для определения режима движения является безразмерное число Рейнольдса. Для труб круглого сечения число Рейнольдса определяется по формуле:

Re = υ·d/ν;

- для потоков произвольного поперечного сечения

Re = υ·Rг /ν;

или

Re = υ·Dг /ν;

где υ — средняя скорость жидкости; d — диаметр трубы; Rг — гидравлический радиус; Dг — гидравлический диаметр; ν — кинематический коэффициент вязкости жидкости.

Режим будет ламинарным, если

Re < Reкр;

ReR < ReRкр,

 

и турбулентным, если

Re > Reкр;

ReR > ReRкр,

В выражениях приведенных выше Reкр и ReRкр — критические числа Рейнольдса, для круглых труб обычно принимаемые равными соответственно 2320 и 580. В таблице приведены ориентировочные значения Reкр для некруглых каналов и некоторых гидроагрегатов, при этом число Рейнольдса определено по формуле Re = υ·Dг /ν.

Для изогнутых каналов (витков), вращающихся вокруг внешней оси 0—0 (следующий рисунок), согласно исследованиям Ю. В. Квитковского и К. И. Толчеева, критическое число Рейнольдса получается несколько большим, чем для прямых труб.