logo
Физика ЭКЗАМЕН

Разные формы записи преобразований Вид преобразований при произвольной ориентации осей

В силу произвольности введения осей координат, многие задачи можно свести к указанному случаю. Если же задача требует иного расположения осей, то можно воспользоваться формулами преобразований в более общем случае. Для этого радиус-вектор точки

,

где  — орты, надо разбить на составляющую параллельную скорости и составляющую ей перпендикулярную

.

Тогда преобразования получат вид

,

где  — абсолютная величина скорости,  — абсолютная величина продольной составляющей радиус-вектора.

Эти формулы для случая параллельных осей, но с произвольно направленной скоростью, можно преобразовать к виду, впервые полученному Герглоцем:

.

Обратите внимание, что самый общий случай, когда начала координат не совпадают в нулевой момент времени, здесь не приведён с целью экономии места. Его можно получить, добавив к преобразованиям Лоренца трансляцию (смещение начала координат).