Работа силы
Понятие “работа“ как физическая величина во всех энциклопедиях, справочниках и учебниках раскрывается как понятие “работа силы“ при описании прямолинейной механической формы движения. Правда, в физике применяется также и понятие “работа поля“, которое трактуется, как “работа сил поля“. В БСЭ работа силы определяется, как “мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения“. В метрологическом справочнике А.Чертова (1990) определение работы силы присутствует в виде словесной формулировки определяющего уравнения для элементарной работы силы F на элементарном перемещении dr без раскрытия ее физического содержания: dA = F dr . ( 1 ) На конечном перемещении A = Fr. Оба вышеприведенных определения относятся к механическим системам. Учебник по физике И.Савельева (2005) так определяет физическое содержание работы силы: “Работа результирующей всех сил, действующих на частицу, идет на приращение кинетической энергии частицы“. Однако в следующем параграфе этого же учебника работа силы трактуется уже, как причина приращения потенциальной энергии, из чего можно сделать вывод, что работа сил идет на приращение любого вида энергии. Что именно понимается под видами энергии, показано на странице, посвященной формам и видам энергии. На странице, посвященной обобщенному уравнению состояния, приведены две формы записи главного определяющего уравнения: U dq = dW ( 2 ) и dW = U dq , ( 3 ) где dW − энергетическое воздействие на систему, dq − приращение координаты состояния системы, U − динамическое воздействие на систему. Там же было показано, что главное определяющее уравнение в форме (2) соответствует принципу причинности и должно применяться во всех случаях внешнего энергетического воздействия dW на систему. С определяющим уравнением (1) для работы силы dA совпадает лишь уравнение (3), если в качестве координаты состояния dq в механической прямолинейной форме движения принять перемещение dr, а в качестве динамического воздействия U принять силу F. Из чего следует, что работа силы dA, если ее определять по уравнению (1), не является энергетическим воздействием dW на механическую систему, несмотря на то, что работа силы имеет ту же размерность, ту же единицу и то же численное значение, что и энергия. Чтобы в механической прямолинейной форме движения соблюдался принцип причинности, уравнение (1) должно быть заменено уравнением F dr = dА . ( 4 ) При такой постановке вопроса понятие “работа“ можно применять не только в прямолинейной форме движения, и можно говорить не только о работе силы. С тем же успехом и с той же размерностью можно говорить и о работе вращающего момента M при вращательной форме движения, и о работе перепада давлений Δp при гидравлической объёмной форме движения, и о работе в других формах движения. В частности, уравнение (2) можно записать в виде: M dφ = dА ( 5 ) или Δp dV = dА , ( 6 ) где dφ − элементарный угол поворота; dV − элементарное перемещение объёма. На странице, посвященной формам движения, показано, что выбор формы движения определяется выбором координаты состояния. И уж по координате состояния определяется вид динамического воздействия. В наших примерах выбор в качестве координаты состояния перемещения предопределяет то, что в качестве динамического воздействия появится сила, выбор угла поворота предопределяет появление вращающего момента, выбор объемного перемещения предопределяет появление перепада давлений. Именно такая причинно-следственная цепочка имеет место в физике, хотя при изучении физики по современной методике складывается впечатление, что всё наоборот. Лишь при рассмотрении понятия “работа сил поля“ причина и следствие меняются местами: силы взаимодействия зарядов поля становятся причиной, а работа этих сил − следствием. И поэтому данной ситуации соответствует главное определяющее уравнение в форме (3).
- 1 Основные кинематические величины
- 2 Движение по окружности
- 3 Криволинейное движение
- 4 Законы Ньютона
- Первый закон Ньютона
- Современная формулировка
- Историческая формулировка
- Второй закон Ньютона
- Современная формулировка
- Историческая формулировка
- Третий закон Ньютона
- Современная формулировка
- Историческая формулировка
- Комментарии к законам Ньютона Сила инерции
- Законы Ньютона и Лагранжева механика
- Решение уравнений движения
- 5 Принцип независимости действия сил
- Момент импульса в классической механике
- Определение
- Вычисление момента
- 8 Центр масс
- Определение
- Центры масс однородных фигур
- В механике
- Центр масс в релятивистской механике
- Центр тяжести
- 9 Степени свободы (механика)
- Примеры
- Движение и размерности
- Системы тел
- Определение степеней свободы механизмов
- 10 Момент силы
- Общие сведения
- Предыстория
- Единицы
- Специальные случаи Формула момента рычага
- Определение
- Вычисление момента
- Сохранение углового момента
- 11 Динамика твердого тела
- ***Можно не читать!***Динамика твердого тела
- 12 Момент инерции
- Теорема Гюйгенса-Штейнера
- Осевые моменты инерции некоторых тел
- Центральный момент инерции
- 13 Теорема Штейнера
- Работа силы
- 15 Работа - потенциальная сила
- Работа силы (сил) над одной точкой
- Работа силы (сил) над системой или неточечным телом
- Кинетическая энергия
- История
- Физический смысл
- Физический смысл работы
- Релятивизм
- Соотношение кинетической и внутренней энергии
- Потенциальная энергия
- О физическом смысле понятия потенциальной энергии
- Физическая абстракция
- Абсолютно упругий удар
- Абсолютно неупругий удар
- Реальный удар
- Гидростатическое давление
- Дифференциальное уравнение Бернулли
- Сила вязкого трения
- Вторая вязкость
- Вязкость жидкостей Динамический коэффициент вязкости
- Кинематическая вязкость
- Ньютоновские и неньютоновские жидкости
- Относительная вязкость
- Ламинарный и турбулентный режим течения жидкости
- Вязкость. Ламинарные и турбулентные режимы течения
- Траектория материальной точки
- Описание траектории
- Связь со скоростью и нормальным ускорением
- Связь с уравнениями динамики
- Траектория свободной материальной точки
- Движение под действием внешних сил в инерциальной системе отсчёта
- Движение под действием внешних сил в неинерциальной системе отсчёта
- Сила инерции
- Терминология
- Реальные и фиктивные силы
- Эйлеровы силы инерции
- Ньютоновы силы инерции
- Д’Аламберовы силы инерции
- Сила инерции на поверхности Земли
- Силы Второй закон Ньютона
- Третий закон Ньютона
- Движение в инерциальной со
- Движение в неинерциальной со
- Общий подход к нахождению сил инерции
- Движение тела по произвольной траектории в неинерциальной со
- Работа фиктивных сил инерции
- Существование инерциальных систем отсчёта
- Эквивалентность сил инерции и гравитации
- Принцип относительности
- История
- Специальная теория относительности
- Создание сто
- Основные понятия и постулаты сто
- Основные понятия
- Синхронизация времени
- Линейность преобразований
- Согласование единиц измерения
- Изотропность пространства
- Принцип относительности
- Постулат постоянства скорости света
- ***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- Преобразования Лоренца
- Преобразования Лоренца в физике
- Вид преобразований при коллинеарных (параллельных) пространственных осях
- Вывод преобразований
- Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- Преобразования Лоренца в матричном виде
- Свойства преобразований Лоренца
- Следствия преобразований Лоренца Изменение длины
- Относительность одновременности
- Замедление времени для движущихся тел Связанные определения
- История
- Лоренцево сокращение
- Строгое определение
- Объяснение
- Толкование
- Значение для физики
- Относительность промежутков времени
- Интервал (теория относительности)
- Определение
- Инвариантность интервала в специальной теории относительности Используемые постулаты
- Доказательство
- Смысл знака квадрата интервала
- Релятивистская механика
- Общие принципы
- Второй закон Ньютона в релятивистской механике
- Функция Лагранжа свободной частицы в релятивистской механике
- Релятивистская частица как неголономная система
- Эквивалентность массы и энергии
- Масса покоя как вид энергии
- Понятие релятивистской массы
- Гравитационное взаимодействие
- Предельный случай безмассовой частицы
- Количественные соотношения между массой и энергией
- Примеры взаимопревращения энергии покоя и кинетической энергии
- Термодинамическая система
- Описание
- Классификация
- Термодинамические системы
- Тепловой процесс
- Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- 4.2.4.Адиабатный процесс
- 4.2.5. Политропный процесс
- Термодинамические величины
- Функции состояния
- Функции процесса
- Идеальный газ
- Классический идеальный газ
- Применение теории идеального газа Физический смысл температуры газа
- Распределение Больцмана
- Адиабатический процесс
- Уравнение состояния идеального газа
- Основное уравнение мкт
- Вывод основного уравнения мкт
- Уравнение среднеквадратичной скорости молекулы
- Асчёт скорости движения молекул. Введение. Температура, как мера средней кинетической энергии молекул
- Среднеквадратичная скорость движения молекул.
- Распределение Максвелла
- Распределение Максвелла Распределение по вектору импульса
- Границы применимости
- Условия классического рассмотрения
- Барометрическая формула
- Закон Стефана — Больцмана
- Теплопроводность
- Закон теплопроводности Фурье
- Коэффициент теплопроводности вакуума
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ