Движение в неинерциальной со
Дважды продифференцировав по времени обе части равенства (1), получаем: = + (11), где:
= есть ускорение тела в инерциальной СО, далее называемое абсолютным ускорением.
= есть ускорение неинерциальной СО в инерциальной СО, далее называемое переносным ускорением.
= есть ускорение тела в неинерциальной СО, далее называемое относительным ускорением.
Существенно, что это ускорение зависит не только от действующей на тело силы, но и от ускорения системы отсчёта, в которой это тело движется, и потому при произвольном выборе этой СО может иметь соответственно произвольное значение.
Относительное ускорение вполне реально, поскольку разница двух реальных величин по (11) — = не может быть не реальной.
Умножим обе части уравнения (11) на массу тела m и получим:
(12)
В соответствии со Вторым законом Ньютона, сформулированным им для инерциальных систем, член слева является результатам умножения массы на вектор, определяемые в инерциальной системе и потому с ним можно связать реальную силы:
= . Это сила, действующая на тело в первой (инерциальной) СО, которая будет здесь названа «абсолютной силой». Она продолжает действовать на тело с неизменными направлением и величиной в любой системе координат.
Следующая сила, определяемая как: (13) по принятым для наименования происходящих движений правилам должна быть названа «переносной».
Важно, что ускорение в общем случае никакого отношения к изучаемому телу не имеет, поскольку вызвано теми силами, которые действуют лишь на тело, выбранное в качестве неинерциальной системы отсчёта. Но масса, входящая в выражение, есть масса изучаемого тела. Ввиду некой искусственности введения такой силы, её можно отнести к категории фиктивных сил.
Перенося выражения для абсолютной и переносной силы в левую часть равенства:
(14)
и применяя введённые обозначения, получаем:
— = (15)
Отсюда видно, что вследствие ускорения в новой системе отсчёта на тело действует не полная сила , но лишь её часть , оставшаяся после вычитания из неё переносной силы так, что:
= (16)
тогда из (15) получаем:
— = (17) по принятым для наименования происходящих движений[10] должна быть названа «относительной».
Именно эта сила вызывает движение тела в неинерциальной системе координат.
Полученный результат в разнице между «абсолютной» и «относительной» силами объясняется тем, что в неинерциальной системе кроме силы на тело дополнительно подействовала некая сила таким образом, что:
= (18)
Эта сила представляет собой силу инерции применительно к движению тел в неинерциальных СО. Она никак не связана с действием реальных сил на тело.
Тогда из (17) и (18) получаем:
= — (19)
То есть сила инерции в неинерциальной СО равна по величине и направлена в противоположном направлении силе, вызывающей ускоренное движение этой системы. Она приложена к ускоряемому телу.
Сила эта не является по своему происхождению результатом действия окружающих тел и полей и возникает исключительно за счёт ускоренного движения второй системы относительно первой.
Все входящие в выражение (18) величины могут быть независимым друг от друга образом измерены, и поэтому поставленный здесь знак равенства означает не что иное, как признание возможности распространения ньютоновской аксиоматики при учёте «фиктивных» сил инерции и на движение в неинерциальных системах отсчёта и потому требует экспериментального подтверждения. В рамках классической физики это действительно и подтверждается.
Различие между силами и состоит лишь в том, что вторая наблюдается при ускоренном движении тела в неинерциальной системе координат, а первая соответствует его неподвижности в этой системе. Поскольку неподвижность есть лишь предельный случай движения с малой скоростью, принципиальной разницы между этими фиктивными силами инерции нет.
Пример 2 Пусть вторая СО движется с постоянной скоростью или просто неподвижна в инерциальной СО. Тогда = 0 и сила инерции отсутствует. Движущееся тело испытывает ускорение, вызываемое действующими на него реальными силами.
Пример 3 Пусть вторая СО движется с ускорением = то есть эта СО фактически совмещена с движущимся телом. Тогда в этой, неинерциальной, СО тело неподвижно вследствие того, что действующая на него сила полностью скомпенсирована силой инерции: = — =
Пример 4 Пассажир едет в авто с постоянной скоростью. Пассажир — тело, авто — его система отсчёта (пока инерциальная), то есть = 0. Авто начинает тормозить и превращается для пассажира во вторую рассмотренную выше неинерциальную систему, к которой навстречу её движения приложена сила торможения . Тут же возникает сила инерции, приложенная к пассажиру, направленная в противоположном направлении (то есть по движению): . Эта сила вызывает непроизвольное движение тела пассажира к ветровому стеклу. При наличии ремня безопасности приложенная к ремню сила инерции вызывает его деформацию растяжения и, согласно Третьему закону, силу его сопротивления растяжению, приложенную к телу. В случае, если деформация не превысит предела прочности на растяжение ремня, реакция ремня уравновесит силу инерции и всё закончится хорошо.
И ещё раз следует подчеркнуть, что в рассматриваемом аспекте сила инерции может совершить реальную работу по растяжению и даже разрыву ремня безопасности, и сомневаться в её реальности нет никаких оснований.
- 1 Основные кинематические величины
- 2 Движение по окружности
- 3 Криволинейное движение
- 4 Законы Ньютона
- Первый закон Ньютона
- Современная формулировка
- Историческая формулировка
- Второй закон Ньютона
- Современная формулировка
- Историческая формулировка
- Третий закон Ньютона
- Современная формулировка
- Историческая формулировка
- Комментарии к законам Ньютона Сила инерции
- Законы Ньютона и Лагранжева механика
- Решение уравнений движения
- 5 Принцип независимости действия сил
- Момент импульса в классической механике
- Определение
- Вычисление момента
- 8 Центр масс
- Определение
- Центры масс однородных фигур
- В механике
- Центр масс в релятивистской механике
- Центр тяжести
- 9 Степени свободы (механика)
- Примеры
- Движение и размерности
- Системы тел
- Определение степеней свободы механизмов
- 10 Момент силы
- Общие сведения
- Предыстория
- Единицы
- Специальные случаи Формула момента рычага
- Определение
- Вычисление момента
- Сохранение углового момента
- 11 Динамика твердого тела
- ***Можно не читать!***Динамика твердого тела
- 12 Момент инерции
- Теорема Гюйгенса-Штейнера
- Осевые моменты инерции некоторых тел
- Центральный момент инерции
- 13 Теорема Штейнера
- Работа силы
- 15 Работа - потенциальная сила
- Работа силы (сил) над одной точкой
- Работа силы (сил) над системой или неточечным телом
- Кинетическая энергия
- История
- Физический смысл
- Физический смысл работы
- Релятивизм
- Соотношение кинетической и внутренней энергии
- Потенциальная энергия
- О физическом смысле понятия потенциальной энергии
- Физическая абстракция
- Абсолютно упругий удар
- Абсолютно неупругий удар
- Реальный удар
- Гидростатическое давление
- Дифференциальное уравнение Бернулли
- Сила вязкого трения
- Вторая вязкость
- Вязкость жидкостей Динамический коэффициент вязкости
- Кинематическая вязкость
- Ньютоновские и неньютоновские жидкости
- Относительная вязкость
- Ламинарный и турбулентный режим течения жидкости
- Вязкость. Ламинарные и турбулентные режимы течения
- Траектория материальной точки
- Описание траектории
- Связь со скоростью и нормальным ускорением
- Связь с уравнениями динамики
- Траектория свободной материальной точки
- Движение под действием внешних сил в инерциальной системе отсчёта
- Движение под действием внешних сил в неинерциальной системе отсчёта
- Сила инерции
- Терминология
- Реальные и фиктивные силы
- Эйлеровы силы инерции
- Ньютоновы силы инерции
- Д’Аламберовы силы инерции
- Сила инерции на поверхности Земли
- Силы Второй закон Ньютона
- Третий закон Ньютона
- Движение в инерциальной со
- Движение в неинерциальной со
- Общий подход к нахождению сил инерции
- Движение тела по произвольной траектории в неинерциальной со
- Работа фиктивных сил инерции
- Существование инерциальных систем отсчёта
- Эквивалентность сил инерции и гравитации
- Принцип относительности
- История
- Специальная теория относительности
- Создание сто
- Основные понятия и постулаты сто
- Основные понятия
- Синхронизация времени
- Линейность преобразований
- Согласование единиц измерения
- Изотропность пространства
- Принцип относительности
- Постулат постоянства скорости света
- ***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- Преобразования Лоренца
- Преобразования Лоренца в физике
- Вид преобразований при коллинеарных (параллельных) пространственных осях
- Вывод преобразований
- Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- Преобразования Лоренца в матричном виде
- Свойства преобразований Лоренца
- Следствия преобразований Лоренца Изменение длины
- Относительность одновременности
- Замедление времени для движущихся тел Связанные определения
- История
- Лоренцево сокращение
- Строгое определение
- Объяснение
- Толкование
- Значение для физики
- Относительность промежутков времени
- Интервал (теория относительности)
- Определение
- Инвариантность интервала в специальной теории относительности Используемые постулаты
- Доказательство
- Смысл знака квадрата интервала
- Релятивистская механика
- Общие принципы
- Второй закон Ньютона в релятивистской механике
- Функция Лагранжа свободной частицы в релятивистской механике
- Релятивистская частица как неголономная система
- Эквивалентность массы и энергии
- Масса покоя как вид энергии
- Понятие релятивистской массы
- Гравитационное взаимодействие
- Предельный случай безмассовой частицы
- Количественные соотношения между массой и энергией
- Примеры взаимопревращения энергии покоя и кинетической энергии
- Термодинамическая система
- Описание
- Классификация
- Термодинамические системы
- Тепловой процесс
- Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- 4.2.4.Адиабатный процесс
- 4.2.5. Политропный процесс
- Термодинамические величины
- Функции состояния
- Функции процесса
- Идеальный газ
- Классический идеальный газ
- Применение теории идеального газа Физический смысл температуры газа
- Распределение Больцмана
- Адиабатический процесс
- Уравнение состояния идеального газа
- Основное уравнение мкт
- Вывод основного уравнения мкт
- Уравнение среднеквадратичной скорости молекулы
- Асчёт скорости движения молекул. Введение. Температура, как мера средней кинетической энергии молекул
- Среднеквадратичная скорость движения молекул.
- Распределение Максвелла
- Распределение Максвелла Распределение по вектору импульса
- Границы применимости
- Условия классического рассмотрения
- Барометрическая формула
- Закон Стефана — Больцмана
- Теплопроводность
- Закон теплопроводности Фурье
- Коэффициент теплопроводности вакуума
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ