logo search
Физика ЭКЗАМЕН

Гидростатическое давление

Гидростатическое давление  — Благодаря полной малоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение Pw, то есть давление р на поверхность равную единице, называется гидростатическим давлением. Это основное свойство жидкостей было открыто и проверено на опыте Паскалем, в 1653 г., хотя несколько ранее оно было уже известно Стивену. Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах. Условно-принятые меры Г. давления всегда выражают отношения силы к поверхности, поэтому в системе абсолютных единиц (см. Единицы мер) они выражают число «дин» на кв. см, именованное число измерения:

т 1l−1 - t−2.

В практике Гидростатическое измеряют давление в кг на 1 кв. см. Большие давления выражают часто в атмосферах, принимая за 1 атмосферу давление в 76 см столба ртути, при температуре 0° под широтой, где ускорение силы тяжести = 0,0635 кг на 1 кв. см = 6,21×106 дин на 1 кв. см. 1 атмосфера = 1,0333 кг на 1 кв. см = 1,0136×106 дин на 1 кв. см для широты Парижа или 1,0132×106 для широты в 45°. Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние каждой такой частицы от свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу Г. давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем. Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными днами, наполненных до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, Г. давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости. На основании сказанного выше можно Г. давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности: так давление в 1 фн. на кв. дм. равно давлению столба воды в 25 дм высотой, так как фн. есть вес 25 куб. дм. воды.

23 Уравнение неразрывности для потока жидкости

       Уравнение неразрывности представляет собой закон сохранения массы вещества применительно к жидкостям. При соблюдении этого уравнения жидкость движется сплошным потоком без разрывов и пустот.

       Рассмотрим произвольный поток жидкости. Выделим в нем два сечения.

       В соответствии с законом сохранения массы сасса жидкости входящей в отсек I-I за время ?t должна быть равна массе жидкости, выходящей через сечение II-II за тот же промежуток времени, то есть M1 = M2.

P1 V1 =P2 V2  | : ?t

P1 V1 /?t =P2 V2  / ?t

P1 Q1 =  P2 Q2

Уравнения неразрывности или сплошности

Из уравнения неразрывности или сплошности следует, что чем  больше площадь сечения, тем меньше скорость и наоборот.

Условие неразрывности струи предусматривает, что струя жидкости нигде не имеет разрывов. Частицы жидкости при стационарном течении движутся по линиям тока, поэтому боковую поверхность трубки тока жидкость не пересекает.

Уравнение неразрывности :

VS - const

Уравнение неразрывности : для идеальной жидкости в стационарных условиях произведение скорости на поперечное сечение трубки тока остается неизменным в любом сечении трубки.

Вывод: из уравнения неразрывности следует, что в более узком сечении трубки тока скорость должна быть больше, чем в более широком сечении.

24