Гидростатическое давление
Гидростатическое давление — Благодаря полной малоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение Pw, то есть давление р на поверхность равную единице, называется гидростатическим давлением. Это основное свойство жидкостей было открыто и проверено на опыте Паскалем, в 1653 г., хотя несколько ранее оно было уже известно Стивену. Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах. Условно-принятые меры Г. давления всегда выражают отношения силы к поверхности, поэтому в системе абсолютных единиц (см. Единицы мер) они выражают число «дин» на кв. см, именованное число измерения:
т 1l−1 - t−2.
В практике Гидростатическое измеряют давление в кг на 1 кв. см. Большие давления выражают часто в атмосферах, принимая за 1 атмосферу давление в 76 см столба ртути, при температуре 0° под широтой, где ускорение силы тяжести = 0,0635 кг на 1 кв. см = 6,21×106 дин на 1 кв. см. 1 атмосфера = 1,0333 кг на 1 кв. см = 1,0136×106 дин на 1 кв. см для широты Парижа или 1,0132×106 для широты в 45°. Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние каждой такой частицы от свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу Г. давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем. Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными днами, наполненных до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, Г. давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости. На основании сказанного выше можно Г. давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности: так давление в 1 фн. на кв. дм. равно давлению столба воды в 25 дм высотой, так как фн. есть вес 25 куб. дм. воды.
23 Уравнение неразрывности для потока жидкости
Уравнение неразрывности представляет собой закон сохранения массы вещества применительно к жидкостям. При соблюдении этого уравнения жидкость движется сплошным потоком без разрывов и пустот.
Рассмотрим произвольный поток жидкости. Выделим в нем два сечения.
В соответствии с законом сохранения массы сасса жидкости входящей в отсек I-I за время ?t должна быть равна массе жидкости, выходящей через сечение II-II за тот же промежуток времени, то есть M1 = M2.
P1 V1 =P2 V2 | : ?t
P1 V1 /?t =P2 V2 / ?t
P1 Q1 = P2 Q2
Уравнения неразрывности или сплошности
Из уравнения неразрывности или сплошности следует, что чем больше площадь сечения, тем меньше скорость и наоборот.
Условие неразрывности струи предусматривает, что струя жидкости нигде не имеет разрывов. Частицы жидкости при стационарном течении движутся по линиям тока, поэтому боковую поверхность трубки тока жидкость не пересекает.
Уравнение неразрывности :
VS - const
Уравнение неразрывности : для идеальной жидкости в стационарных условиях произведение скорости на поперечное сечение трубки тока остается неизменным в любом сечении трубки.
Вывод: из уравнения неразрывности следует, что в более узком сечении трубки тока скорость должна быть больше, чем в более широком сечении.
24
- 1 Основные кинематические величины
- 2 Движение по окружности
- 3 Криволинейное движение
- 4 Законы Ньютона
- Первый закон Ньютона
- Современная формулировка
- Историческая формулировка
- Второй закон Ньютона
- Современная формулировка
- Историческая формулировка
- Третий закон Ньютона
- Современная формулировка
- Историческая формулировка
- Комментарии к законам Ньютона Сила инерции
- Законы Ньютона и Лагранжева механика
- Решение уравнений движения
- 5 Принцип независимости действия сил
- Момент импульса в классической механике
- Определение
- Вычисление момента
- 8 Центр масс
- Определение
- Центры масс однородных фигур
- В механике
- Центр масс в релятивистской механике
- Центр тяжести
- 9 Степени свободы (механика)
- Примеры
- Движение и размерности
- Системы тел
- Определение степеней свободы механизмов
- 10 Момент силы
- Общие сведения
- Предыстория
- Единицы
- Специальные случаи Формула момента рычага
- Определение
- Вычисление момента
- Сохранение углового момента
- 11 Динамика твердого тела
- ***Можно не читать!***Динамика твердого тела
- 12 Момент инерции
- Теорема Гюйгенса-Штейнера
- Осевые моменты инерции некоторых тел
- Центральный момент инерции
- 13 Теорема Штейнера
- Работа силы
- 15 Работа - потенциальная сила
- Работа силы (сил) над одной точкой
- Работа силы (сил) над системой или неточечным телом
- Кинетическая энергия
- История
- Физический смысл
- Физический смысл работы
- Релятивизм
- Соотношение кинетической и внутренней энергии
- Потенциальная энергия
- О физическом смысле понятия потенциальной энергии
- Физическая абстракция
- Абсолютно упругий удар
- Абсолютно неупругий удар
- Реальный удар
- Гидростатическое давление
- Дифференциальное уравнение Бернулли
- Сила вязкого трения
- Вторая вязкость
- Вязкость жидкостей Динамический коэффициент вязкости
- Кинематическая вязкость
- Ньютоновские и неньютоновские жидкости
- Относительная вязкость
- Ламинарный и турбулентный режим течения жидкости
- Вязкость. Ламинарные и турбулентные режимы течения
- Траектория материальной точки
- Описание траектории
- Связь со скоростью и нормальным ускорением
- Связь с уравнениями динамики
- Траектория свободной материальной точки
- Движение под действием внешних сил в инерциальной системе отсчёта
- Движение под действием внешних сил в неинерциальной системе отсчёта
- Сила инерции
- Терминология
- Реальные и фиктивные силы
- Эйлеровы силы инерции
- Ньютоновы силы инерции
- Д’Аламберовы силы инерции
- Сила инерции на поверхности Земли
- Силы Второй закон Ньютона
- Третий закон Ньютона
- Движение в инерциальной со
- Движение в неинерциальной со
- Общий подход к нахождению сил инерции
- Движение тела по произвольной траектории в неинерциальной со
- Работа фиктивных сил инерции
- Существование инерциальных систем отсчёта
- Эквивалентность сил инерции и гравитации
- Принцип относительности
- История
- Специальная теория относительности
- Создание сто
- Основные понятия и постулаты сто
- Основные понятия
- Синхронизация времени
- Линейность преобразований
- Согласование единиц измерения
- Изотропность пространства
- Принцип относительности
- Постулат постоянства скорости света
- ***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- Преобразования Лоренца
- Преобразования Лоренца в физике
- Вид преобразований при коллинеарных (параллельных) пространственных осях
- Вывод преобразований
- Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- Преобразования Лоренца в матричном виде
- Свойства преобразований Лоренца
- Следствия преобразований Лоренца Изменение длины
- Относительность одновременности
- Замедление времени для движущихся тел Связанные определения
- История
- Лоренцево сокращение
- Строгое определение
- Объяснение
- Толкование
- Значение для физики
- Относительность промежутков времени
- Интервал (теория относительности)
- Определение
- Инвариантность интервала в специальной теории относительности Используемые постулаты
- Доказательство
- Смысл знака квадрата интервала
- Релятивистская механика
- Общие принципы
- Второй закон Ньютона в релятивистской механике
- Функция Лагранжа свободной частицы в релятивистской механике
- Релятивистская частица как неголономная система
- Эквивалентность массы и энергии
- Масса покоя как вид энергии
- Понятие релятивистской массы
- Гравитационное взаимодействие
- Предельный случай безмассовой частицы
- Количественные соотношения между массой и энергией
- Примеры взаимопревращения энергии покоя и кинетической энергии
- Термодинамическая система
- Описание
- Классификация
- Термодинамические системы
- Тепловой процесс
- Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный
- 4.2.4.Адиабатный процесс
- 4.2.5. Политропный процесс
- Термодинамические величины
- Функции состояния
- Функции процесса
- Идеальный газ
- Классический идеальный газ
- Применение теории идеального газа Физический смысл температуры газа
- Распределение Больцмана
- Адиабатический процесс
- Уравнение состояния идеального газа
- Основное уравнение мкт
- Вывод основного уравнения мкт
- Уравнение среднеквадратичной скорости молекулы
- Асчёт скорости движения молекул. Введение. Температура, как мера средней кинетической энергии молекул
- Среднеквадратичная скорость движения молекул.
- Распределение Максвелла
- Распределение Максвелла Распределение по вектору импульса
- Границы применимости
- Условия классического рассмотрения
- Барометрическая формула
- Закон Стефана — Больцмана
- Теплопроводность
- Закон теплопроводности Фурье
- Коэффициент теплопроводности вакуума
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ