logo search
Физика ЭКЗАМЕН

Принцип относительности

Ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом. Совместно с остальными постулатами, перечисленными выше, принципа относительности достаточно, чтобы получить явный вид преобразований координат и времени между ИСО.

Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна v1, скорость системы S3 относительно S2 равна v2, а относительно S1, соответственно, v3. Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство:

Так как относительные скорости систем отсчёта v1 и v2 произвольные и независимые величины, то это равенство будет выполняться только в случае, когда отношение σ(v) / v равно некоторой константе α, единой для всех инерциальных систем отсчёта, и, следовательно, .

Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию .

Таким образом, с точностью до произвольной константы α, получается явный вид преобразований между двумя ИСО. О численном значении константы α и её знаке без обращения к эксперименту ничего сказать нельзя [14]. Если α > 0, то удобно ввести обозначение α = 1 / c2. Тогда преобразования принимают следующий вид:

и называются преобразованиями Лоренца. Из дальнейшего анализа станет ясно, что константа имеет смысл максимальной скорости движения любого объекта. Подобный вывод преобразований Лоренца стал известен спустя 5 лет после известной статьи Эйнштейна 1905 года, благодаря работам Игнатовского[12], Франка и Роте [8] (см. исторический очерк).