3.2.2. Экологические показатели
Снижение температур в топке, как уже отмечалось, способствует минимизации образования «термических» оксидов азота. А подача в нижние горелки воздуха с избытком г = 0,6–0,7 приводит к снижению выхода «топливных» оксидов азота. Но главная особенность описываемой низкоэмиссионной вихревой технологии сжигания заключается в полувосстановительном (с некоторым недостатком кислорода) характере среды в нижней (вихревой) зоне топки, где присутствие большого количества активного кокса, как доказано многими исследованиями, способствует процессу распада уже образовавшихся ранее оксидов азота.
На рис. 3.3 представлены концентрации СNOx после реконструкции котлов по ВИР-технологии в Польше (при сжигании каменных углей польских месторождений), которые показывают, что указанная модернизация котлов позволяет без значительных капитальных затрат снизить концентрации NОх среднем на 40–50 % (до 300–450 мг/м3 или 110–150 г/ГДж) при одновременном повышении экономичности работы оборудования. На рис.3.4 представлены аналогичные результаты испытаний котла П-59 после модернизации при сжигании березовского бурого угля. Особенностью ВИР-технологии является создание в нижней части топки обширной вихревой зоны с многократной циркуляцией частиц и температурами 1000 – 1250 oС, благоприятными для связывания SO2 свободным СаО. С целью экспериментальной проверки возможности связывания SO2 в активном объеме топки при низкоэмиссионной вихревой технологии сжигания топлива были проведены серии опытов с подачей сорбента через отдельные горелки без топлива и в смеси с топливом. Степень связывания серы в диапазоне Са/S=2,5 – 3,5 моль/моль составила 25 – 35 % (рис. 3.5).
В качестве сорбента использовался дешевый крупнодробленый природный известняк (макс. до 25 мм) с содержанием СаСО3 95 – 97 % , который смешивался на угольном складе с топливом. Равномерному его распределению в топливной массе способствовали многочисленные пересыпки на ленточных транспортерах системы топливоподачи и последующий размол совместно с углем в мельницах.
Рис. 3.3. Зависимость эмиссии NOx в дымовых газах от нагрузки котлоагрегатов
Образующийся при этом главным образом сернокислый кальций и непрореагировавший сорбент удаляются вместе с летучей золой. Только образующийся в незначительных количествах сернистокислый кальций может создавать проблемы с использованием золы. Эти опыты позволили сделать вывод о высокой эффективности такой схемы сероулавливания и внедрить эту технологию на трех котлах ТЭЦ для работы в постоянном режиме.
Рис. 3.4. Концентрация NОx в уходящих газах котла П-59 в диапазоне нагрузок
185–275 МВт
Рис. 3.5. Зависимость снижения концентраций SO2 от соотношения Са/S при использовании сухого метода сероочистки дымовых газов
Хорошие результаты получены и на реконструированном на сжигание угля по ВИР-технологии котле П-59, где после модернизации наблюдается увеличение связывания серы кальцием собственной золы. По результатам анализов УралВТИ и ВТИ, коэффициент связывания серы на реконструированном котле при сжигании березовского угля на 50 % выше, чем до реконструкции (рис. 3.6).
Рис. 3.6. Эффективность связывания SO2 в топке котла П-59 при сжигании березовского угля по данным УралВТИ (руководители работ А.Н Алехнович. и В.В Богомолов.)
Применение ВИР-технологии оказалось благоприятным и в части обеспечения снижения эмиссии пыли, что можно объяснить, на наш взгляд, следующими причинами:
– некоторым уменьшением концентрации пылевых частиц в газах за счет роста К.П.Д.;
– снижением температуры уходящих газов за котлом на 20–40 oС и коэффициента избытка воздуха в них;
– снижением температуры в ядре горения на 200 oС, в результате чего уменьшается (по сравнению с прямоточно-факельным процессом) оплавленность частиц летучей золы, и, следовательно, происходит увеличение их удельной поверхности.
- Предисловие
- 1. Сжигание топлив в кипящем слое
- 1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем
- 1.2. Топки с циркулирующим кипящим слоем
- 1.2.1. Отечественные котлы с циркулирующим кипящим слоем
- 1.2.2. Котлы с циркулирующим кипящим слоем под давлением
- 1.2.3.Зарубежные котлы с кипящим слоем (промышленный опыт)
- Котлы с кипящим слоем, эксплуатируемые в сша
- Применение котлов с цкс для сжигания сланцев
- 1.3. Сжигание твердых топлив с использованием аэрофонтанных предтопков
- 2. Плазменная технология
- 3. Разработка новых конструкций топочных камер для сжигания углей
- 3.1. Вихревые топки с жидким шлакоудалением
- 3.2. Принцип технологии вихревого низкотемпературного сжигания
- 3.2.1. Экономичность вир- технологии
- 3.2.2. Экологические показатели
- 3.2.3. Надежность и маневренность вир-технологии
- 3.2.4. Результаты испытаний модернизированного котла пк-38 (ст. № 3а) Назаровской грэс
- 3.3. Пылеугольный котел с кольцевой топкой для крупных энергоблоков
- 4. Термическая подготовка углей перед сжиганием в условиях тэс
- 4.1.Термическая подготовка углей в термоциклонных предтопках
- 4.2. Разработки эниНа
- 4.3. Работы Политехнического института сфу по применению предварительной термической подготовки углей в условиях тепловой электростанции
- 4.3.1. Разработка технологии сжигания с внутритопочной термической подготовкой углей
- 4.3.2.Принципиальные схемы термической подготовки углей для организации безмазутной растопки и подсветки факела топочных камер котлов
- 20, 21, 24, 25, 26, 29 – Щелевые зазоры; 22 – нижние торцы амбразур;
- 26, 27, 28, 29 – Зазоры
- 4.3.3. Опытно-промышленный образец муфельного предтопка на котле бкз-420 140 Красноярской тэц-2
- 4.3.4. Система термоподготовки для организации муфельной растопки котлов Томь-Усинской грэс
- 4.3.5. Универсальная горелка для котлов пк-40-1 Беловской грэс
- Птб при включении питателей пыли на муфеле:
- Птб при расшлаковке абразуры муфеля при работе в режиме основной горелки:
- 4.3.6. Универсальная всережимная горелка для котлов бкз-420-140 Красноярской грэс-2
- 5. Сжигание водотопливных суспензий
- 5.1. Современное состояние технологии сжигания водотопливных суспензий
- 5.2. Основные технологические характеристики водотопливных суспензий
- 5.3. Опыт применения водоугольных суспензий
- 5.4. Суспензионное топливо для мазутных тэс и котельных
- 5.5. Опыт применения водомазутных эмульсий на энергетических котлах тгмп-314 и тгм-96 тэц-23 оао «Мосэнерго»
- 5.6.Разработки научно-исследовательского и проектно-изыскательского института «Новосибирсктеплоэлектропроект» Сибирского энтц
- 5.7. Исследования мэи (Технический университет) по применению водомазутных эмульсий для улучшения технико-экономических и экологических характеристик котельных агрегатов
- 5.8. Технико-экономическая перспективаиспользования суспензионного угольного топлива
- 6. Гидравлические электрические станции
- 3 Сопло; 4 рабочее колесо; 5 кожух; 6 отклонитель; 7 лопасти (ковши); 8 нижний бьеф
- Состав и компоновка основных сооружений
- Плотины
- Типы и параметры гидрогенераторов
- Малые гэс
- 7. Геотермальная энергетика
- 7.1. Использование геотермальных ресурсов в мире
- 7.2. Геотермальные ресурсы России
- 7.3. Геотермальные энергетические технологии и оборудование России
- 1 Скважина; 2 бак-аккумулятор; 3 расширитель; 4 турбина; 5 генератор;
- 6 Градирня; 7 насос; 8 смешивающий конденсатор; 9, 10 насос
- 7.4. Российские бинарные энерготехнологии
- 7.4. Геотермальное теплоснабжение
- 7.5. Перспективы развития геотермальной энергетики России
- 7.6. Опытная геотермальная электростанция, основанная на цикле а.И.Калины
- 8. Ветроэнергетические установки
- 8.1. Состояние и перспективы развития мировой ветроэнергетики
- 8.2. Высотная ветроэнергетическая установка
- 8.3. Ветроэнергетика в заполярных условиях
- Основные направления развития ветроэнергетики в заполярных условиях
- Преимущества применения энергии ветра в заполярных и холодных климатических условиях
- Специфика развития ветроэнергетики и эксплуатации вэу при холодном климате
- Использование энергии ветра для отопления в условиях холодного и заполярного климата
- Новая ветро-дизельная электрическая установка
- 9. Альтернативные способы получения электроэнергии
- 9.1. Магнитогидродинамическое преобразование энергии
- 2 Сопло; 3 мгд-генератор; 4 место конденсации щелочных металлов; 5 насос; 6 место ввода щелочных металлов
- 9.2. Термоэлектрические генераторы
- 9.3. Изотопная энергетика
- 9.4. Термоэмиссионные генераторы
- 1 Катод; 2 анод
- 9.5. Электрохимические генераторы
- 3 Электролит; 4 анод
- 9.6. Использование морских возобновляемых ресурсов
- 9.6.1. Приливные электростанции
- Агрегаты пэс
- 9.6.2. Океанские гидроэлектростанции (огэс) на основе морских течений Физические основы работы огэс
- 9.6.3. Волновые электростанции
- 9.6.4. Использование тепловой энергии океана
- 9.7. Солнечная энергетика
- 9.7.1. Современное состояние солнечной энергетики
- Типы циркуляционных и гравитационных гелиоустановок:
- 9.7.2.Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
- 9.7.3. Разработка и испытания солнечно-топливной котельной в Краснодарском крае
- 9.7.4. Повышение эффективности преобразования солнечной энергии
- Повышение числа часов использования установленной мощности сэс
- Увеличение срока службы и снижение стоимости солнечной электростанции
- 9.8. Использование энергии термоядерных реакций
- 9.9. Комбинированные энергоустановки
- 9.10. Биоэнергетические установки
- 9.10.1. Вклад биотоплива в мировое производство энергии
- 9.10.2. Прямое сжигание
- 9.10.3. Пиролиз
- Газификация биомассы
- 9.10.5. Виды топлив, получаемых из биомассы
- 9.10.6. Перспективы развития биоэнергетики России с использованием древесины
- Прямое сжигание древесины Олонецкая теплостанция на древесных отходах
- Разработчик и изготовитель котла на биотопливе
- Принцип действия котла с колосниковой решеткой. Процесс горения и факторы, влияющие на него
- Циркуляция воды в котле
- Газогенераторные установки на древесине для получения тепловой и электрической энергии
- 9.11. Подземная газификация углей
- 9.14.1. Отечественный опыт подземной газификации угля
- Подземная газификация угля в г. Красноярске
- 9.15. Тепловые насосы
- 9.15.1. Перспективы применения тепловых насосов
- 9.15.2. Тепловые насосы в системах малой энергетики
- Заключение
- Библиографический список к главе 1
- К главе 2
- К главе 3
- К главе 4
- К главе 5
- К главе 6
- К главе 7
- К главе 8.
- К главе 9