6.1. Термодинамические потоки
Термодинамические потоки, связанные с переносом вещества, энергии или импульса из одной части среды в другую, возникают в случае, если значения тех или иных физических параметров различны в различных точках среды. При наличии в среде различной концентрации какой-либо примеси возникают диффузионные потоки, в случае разной температуры - тепловые потоки, при различной скорости течения - потоки импульса, или количества движения. В первом случае говорят о явлении диффузии, во втором - о явлении теплопроводности, в третьем - о явлении вязкости.
Диффузией называется процесс самопроизвольного выравнивания концентраций веществ в смесях. Она наблюдается в различных средах, но её скорость сильно зависит от агрегатного состояния вещества. В газах это явление происходит достаточно быстро, что мы можем, в частности, наблюдать по тому, как происходит распространение запахов в воздухе. В жидкостях явление диффузии происходит значительно медленнее и проявляется, например, при растворении в них твердых тел или при взаимном смешивании различных жидкостей. Для наблюдения диффузии в твердых телах обычно требуется очень большое время.
Теплопроводность - это явление, приводящее к выравниванию температуры в различных точках среды. Интенсивность тепловых потоков при теплопроводности в твердых телах сильно зависит от свойств тела. Наибольшую теплопроводность имеют металлы, а наименьшую - различные теплоизоляционные материалы, такие как асбест, пенопласт и т.д. Достаточно большая теплопроводность металлов связана с тем, что в них перенос теплоты осуществляется не вследствие хаотического движения атомов и молекул, как, например, в газах или жидкостях, а свободными электронами, имеющими гораздо большие скорости теплового движения.
Явление вязкости или внутреннего трения наблюдается как в газах и жидкостях, так и в твердых телах. Оно приводит к возникновению силы сопротивления при движении тела в жидкости или газе, и к затуханию звуковых волн при прохождении их через различные среды. В частности, с явлением вязкого трения связан процесс затухания колебаний в механических осцилляторах.
С точки зрения молекулярно-кинетической теории основной причиной переноса в средах является тепловое хаотическое движение их микрочастиц. Находясь в постоянном хаотическом движении, молекулы газа, соударяясь между собой, передают друг другу свою кинетическую энергию. Это приводит к выравниванию температуры в различных частях газа. Аналогично при тепловом движении происходит выравнивание концентраций веществ в смеси и передача импульса между движущимися друг относительно друга слоями жидкости.
Для количественного описания термодинамического потока вводят величину , численно равную количеству физической величины, переносимой за одну секунду через выбранную поверхность. В случае диффузии потокопределяет интенсивность переноса частиц примеси; при теплопроводности величиначисленно равна количеству теплоты, переносимой за единицу времени; для явления вязкости величинахарактеризует перенос импульса.
В общем случае поток определяется следующим образом:
, | (6.1) |
где: - плотность термодинамического потока,- вектор, численно равный величине элементарной поверхностии направленный по нормали к этой поверхности. Если термодинамический поток однороден и векторво всех точках среды одинаков и перпендикулярен поверхности, то величина потока, проходящего через плоскую площадку, определяется по формуле:
, | (6.2) |
где - абсолютное значение (модуль) вектора.
Если рассматриваемая термодинамическая система находится в состоянии, близком к равновесию, то плотность термодинамического потока пропорциональна градиенту соответствующей физической величиныв той же точке:
, | (6.3) |
где -коэффициенты переноса, или кинетические коэффициенты.
Из выражения (6.3) следует, что плотность термодинамического потока имеет тем большую величину, чем сильнее изменяется физическая величинаот точки к точке пространства. Кроме этого, знак минус в этом выражении указывает на то, что потокнаправлен в сторону уменьшения величины.
Величина зависит от описываемого процесса. При описании диффузии в качестве параметравыступает относительная концентрация примеси, а коэффициент переносапредставляет собойкоэффициент диффузии . Для случая теплопроводности вместо необходимо использовать энергию теплового движения молекулы, а коэффициентявляетсякоэффициентом теплопроводности. Параметромпри описании вязкости будет импульс упорядоченного движения молекулы, а величина- этокоэффициент вязкости.
В случае если величина зависит только от одной пространственной переменной (случай одномерной среды), формула(6.3) приобретает более простой вид:
(6.4) |
или для потока :
. | (6.5) |
При описании термодинамических потоков будем предполагать, что в среде не происходит процесса макроскопического перемешивания, и перенос осуществляется только из-за неупорядоченного движения микрочастиц среды. Однако в реальном газе и жидкости может возникнуть перемешивание, как вследствие каких-либо механических воздействий, так и при конвекции.
Явление конвекции возникает в жидкостях и газах благодаря полю силы тяжести. Оно имеют место, в частности, если нагрев жидкости происходит снизу, а её охлаждение сверху. Нижние слои при этом расширяются, и начинается подъём более нагретой жидкости. При этом перенос теплоты будет происходить за счет макроскопического движения среды. Аналогичный процесс наблюдается и при смешивании двух жидкостей, если более плотную жидкость налить сверху на менее плотную, например воду на глицерин или спирт.
Перенос при макроскопическом перемешивании происходит обычно с гораздо большей интенсивностью, чем перенос, вызванный только тепловым движением молекул. По этой причине, например, теплопередача в воздухе наблюдается гораздо более интенсивно, чем это должно быть при реализации теплопроводности только за счет теплового движения молекул. Для уменьшения конвективного теплообмена необходимо ограничить возможность возникновения в воздухе макроскопического перемешивания. Этого можно достичь путем разделения воздушной среды на большое количество микроскопических областей, например, с помощью пористой среды. Тогда конвекция внутри каждой из областей не возникает, и теплопередача будет осуществляться только благодаря теплопроводности воздуха. Именно этим объясняется плохая теплопроводность теплоизоляционных материалов, в порах которых находится воздушная среда. Для лучших теплоизоляторов их теплопроводность приближается к теплопроводности воздуха.
- Глава 1. Первое начало термодинамики
- 1.1. Термодинамические состояния и термодинамические процессы
- 1.2. Внутренняя энергия и температура термодинамической системы
- 1.3. Методы измерения температуры
- 1.4. Адиабатически изолированная система
- 1.5. Первое начало термодинамики
- Глава 2. Уравнения состояния термодинамических систем.
- 2.1. Уравнение состояния идеального газа
- .2. Основные положения молекулярно-кинетической теории
- 2.3. Экспериментальные подтверждения молекулярно-кинетической теории
- 2.4. Теплоёмкость идеального газа
- 2.5. Адиабатический процесс
- 2.6. Политропический процесс
- 2.7. Газ Ван-дер-Ваальса
- Глава 3. Второе и третье начала термодинамики.
- 3.1. Тепловые машины
- 3.2. Цикл Карно
- 3.3. Расчет цикла Карно для реального газа
- 3.4. Второе начало термодинамики
- 3.5. Теорема Карно
- 3.6. Термодинамическая шкала температур
- 3.7. Неравенство Клаузиуса
- 3.8. Термодинамическая энтропия
- 3.9. Закон возрастания энтропии
- 3.10. Третье начало термодинамики
- Глава 4. Описание термодинамических процессов.
- 4.1. Основное неравенство и основное уравнение термодинамики
- 4.2. Термодинамические потенциалы
- 4.3. Применение термодинамических потенциалов для описания эффекта Джоуля-Томсона
- 4.4. Принцип Ле-Шателье - Брауна
- 4.5. Введение в термодинамику необратимых процессов
- Глава 5. Статистическое описание равновесных состояний.
- 5.1. Функция распределения
- 5.2. Распределение Больцмана
- 5.3. Принцип детального равновесия
- 5.4. Распределение Максвелла
- 5.5. Экспериментальная проверка распределения Максвелла
- 5.6. Распределение Максвелла-Больцмана
- 5.7. Каноническое распределение Гиббса
- 5.8. Равновесные флуктуации
- 5.9. Статистическое обоснование второго начала термодинамики
- Глава 6. Явление переноса.
- 6.1. Термодинамические потоки
- 6.2. Описание явлений переноса в газах
- 6.3. Эффузия в разреженном газе
- 6.4. Броуновское движение
- 6.5. Производство энтропии в необратимых процессах
- Глава 7. Равновесие фаз и фазовые превращения.
- 7.1. Агрегатные состояния вещества
- 7.2. Условия равновесия фаз
- 7.3. Явления на границе раздела газа, жидкости и твердого тела
- 7.4. Фазовые переходы первого рода
- 7.5. Диаграммы состояния
- 7.6. Фазовые переходы второго рада
- 7.7. Критические явления при фазовых переходах