2.5. Адиабатический процесс
В параграфе 1.4 было введено понятие адиабатически изолированной системы, то есть системы, которая не обменивается теплотой с окружающими телами. Процессы, происходящие в такой системе, называются адиабатическими. Так как при адиабатических процессах , то первое начало термодинамики для них можно записать в форме:
. | (2.74) |
Совместное применение этого выражения и уравнения Клапейрона-Менделеева позволяет получить уравнение, описывающее адиабатический процесс в идеальном газе. Для этого представим выражение (2.74) в виде:
. | (2.75) |
Нахождение полных дифференциалов от правой и левой частей уравнения Клапейрона-Менделеева (2.10) дает:
. | (2.76) |
Вычитание из этой формулы выражения (2.75) приводит его к виду
. | (2.77) |
С учетом соотношения Майера (2.70) имеем:
. | (2.78) |
Умножим выражение (2.75) на отношение теплоемкостей и сложим его с формулой(2.78). Тогда получим
, | (2.79) |
где введено обозначение
. | (2.80) |
Величина называетсяпоказателем адиабаты. Формулы (2.65) и (2.71) позволяют определить показатель адиабаты через количество степеней свободы :
. | (2.81) |
Из этого выражения следует, что показатель адиабаты для идеального газа всегда больше единицы. Для одноатомных газов этот показатель равен 1,67, а для двухатомных и многоатомных соответственно 1,4 и 1,33.
Поделив уравнение (2.79) на произведение преобразуем его к виду
(2.82) |
или
. | (2.83) |
Отсюда следует:
. | (2.84) |
Интегрирование этого уравнения позволяет получить формулу
. | (2.85) |
которая называется уравнением Пуассона в честь французского механика, математика и физика Симеона Дени Пуассона (1781 - 1840). Это уравнение адиабатического процесса для идеального газа, или адиабаты - кривой, описываемой этим уравнением в переменных и.
С помощью уравнения Клапейрона-Менделеева уравнение (2.85) можно переписать, используя другие параметры состояния идеального газа:
, | (2.86) |
. | (2.87) |
Сравнивая уравнение Пуассона (2.85) с уравнением Бойля-Мариотта (2.11): , можно убедиться, что адиабата идеального газа, построенная в координатахи, всегда идёт круче изотермы (см. рис. 2.7).
Рис. 2.7. Графики адиабатических процессов (1) и изотермического процесса (2) |
Это связано с тем, что, как указывалось выше, показатель адиабаты для газов всегда больше единицы и принимает наибольшее значение для одноатомных газов. Поэтому самую крутую адиабату имеют инертные газы, молекулы которых состоят из одного атома.
Поскольку адиабата пересекает все изотермы данной термодинамической системы, возможен адиабатический переход с одной изотермы на другую, путём сжатия или разрежения газа. А посредством изотермического изменения объёма возможен переход с одной адиабаты на другую.
Работу идеального газа в адиабатическом процессе можно определить с помощью выражения (2.74). Интегрирование (см. комментарий к формулам (1.6) - (1.8)) этого выражения дает:
, | (2.88) |
где: и- температуры газа в начале и в конце процесса соответственно. В данном случае работа при переходе из одного состояния системы в другое определяется только функцией состояния системы, так как путь перехода однозначно задан уравнением Пуассона.
Молярная теплоемкость газа может быть выражена через показатель адиабаты. Подстановка в формулу(2.80) соотношения Майера (2.70) приводит её к виду
, | (2.89) |
из которого следует искомое выражение:
. | (2.90) |
С учетом этой формулы выражение (2.88) может быть представлено в форме
. | (2.91) |
На основании уравнения адиабаты (2.86) запишем соотношение между температурами и объемами газа в начальном и конечном состояниях:
(2.92) |
или
. | (2.93) |
Подстановка этой формулы в выражение (2.91) дает
(2.94) |
или с учетом уравнения Клапейрона-Менделеева (2.10)
. | (2.95) |
Формула (2.95) может быть получена и непосредственно с помощью интеграла (1.13), при подстановке в него уравнения Пуассона (2.85), записанного для произвольной точки адиабаты
. | (2.96) |
Тогда имеем
. | (2.97) |
Адиабатический процесс может быть реализован в газе либо путём его термоизоляции, либо за счёт быстрого протекания процесса, когда процесс теплопередачи не успевает произойти. Первый способ применялся в опытах Джоуля, описанных выше, где было принципиально необходимо достижение газом состояния, близкого к равновесному. Поэтому каждый из опытов требовал продолжительного времени (около часа) и возникала необходимость введения поправок на тепловые потери.
Примером быстропротекающего процесса является распространение звука в воздухе. Несмотря на то, что такой процесс нельзя считать равновесным, опыт показывает, что для его описания возможно применение уравнения Пуассона, полученного в рамках равновесной термодинамики.
В 1816 году, за семь лет до вывода Пуассоном уравнения адиабатического процесса, Пьером Симоном Лапласом (1749 - 1827) была получена формула для скорости распространения звука в газе
, | (2.98) |
где: и- давление и плотность газа. Измерения значений,ипозволяют по этой формуле рассчитать значение показателя адиабаты. Для воздуха это значение близко к 1,4, что указывает на возможность с хорошей точностью считать его состоящим из двухатомных молекул.
Экспериментальное определение молярных теплоёмкостей идля реальных газов представляет собой довольно сложную задачу. Большой вклад в её решение внёсАнри Виктор Реньо (1810 - 1878), под руководством которого были измерены молярные теплоёмкости многих веществ, в том числе газов. Исследования проводились в лаборатории при Сервской фарфоровой мануфактуре и носили прикладной характер, связанный с совершенствованием тепловых машин. Некоторыми из методик, разработанных Ренье, впоследствии воспользовался Джоуль при проведении своих опытов.
В заключение рассмотрим вопрос о том, как соотносится уравнение Пуассона, записанное в переменных и(2.86), с результатами опытов Гей-Люссака, описанными в предыдущем параграфе. Действительно, в соответствии с результатами этих опытов температура идеального газа не изменяется при его расширении в жестком, адиабатически изолированном сосуде, а согласно уравнению (2.86) температура такого газа при адиабатическом процессе должна понижаться. Это кажущееся противоречие объясняется тем, что в соответствии со схемой опыта Гей-Люссака, показанной на рис. 2.5, идеальный газ при расширении не совершает механической работы над внешними телами: . Поэтому соотношение(2.74) сводится к тождеству: , и получение из него выражений(2.75) - (2.79) и далее формул (2.82) - (2.85) становится невозможным.
Таким образом, уравнение Пуассона неприменимо для описания опытов Гей-Люссака. Это связано с тем, что процесс адиабатического расширения идеального газа без совершения механической работы является необратимым, в отличие от обратимого адиабатического расширения, описываемого уравнением Пуассона. Подробнее описание необратимого адиабатического расширения рассмотрено в параграфе 4.3.
Задача 2.2. Внутри закрытого теплоизолированного цилиндрического сосуда находится теплонепроводящий поршень, который может двигаться без трения. В начальный момент поршень находится в середине сосуда и делит его на равные части объемом . В каждой из этих половин сосуда находится идеальный газ с показателем адиабаты при давлении . Какую работу надо совершить, чтобы уменьшить объём одной из половин в два раза?
Решение: В обеих частях цилиндрического сосуда будет происходить адиабатический процесс
,
где объёмы V1 и V2 двух частей сосуда связаны соотношением
.
Пусть происходит уменьшение в два раза половины сосуда, описываемой объемом , то есть объем изменяется от до . Соответственно объем увеличивается от до . Тогда элементарная работа, совершаемая над газом, будет определяться разностью давлений в двух частях сосуда:
,
где учтено, что .
Подстановка в последнюю формулу первых двух соотношений и её интегрирование дает
При это выражение равно нулю, в чем можно убедиться устремив к единице и раскрыв неопределенность. При это выражение становится положительным, так как при увеличении параметра второе слагаемое в этой формуле растёт быстрее, чем убывает первое.
Задача 2.3. Адиабатически изолированный сосуд разделен перегородкой на две равные части, каждая объемом . В левой части находится двухатомный идеальный газ при давлении и температуре . Торцевая стенка правой части сосуда является поршнем. Перегородку вынули, а затем газ медленно сжали поршнем так, что он снова стал занимать левую половину сосуда. Найти давления , и температуры , газа после изъятия перегородки и в конце процесса.
Решение: При адиабатическом расширении идеального газа без совершения работы над внешними телами, его внутренняя энергия и температура не изменяются. Поэтому после изъятия перегородки имеем:
,
.
При адиабатическом сжатии газа поршнем увеличение его внутренней энергии равно работе, совершенной поршнем. Температура и давление газа в конце процесса могут быть найдены с помощью соотношений (2.86) и (2.85), из которых имеем:
,
.
Отметим, что хотя протекающие процессы при расширении газа и его сжатии различные, уравнение состояния идеального газа применимо для описания конечного состояния газа для обоих этих случаев. Расширение газа после удаления перегородки будет необратимым, а его медленное сжатие поршнем - можно описывать как обратимый процесс. Возможность использования уравнения состояния идеального газа для описания конечного состояния необратимого процесса связано с предположением о том, что при достижении этого конечного состояния газ становится термодинамически равновесной системой.
- Глава 1. Первое начало термодинамики
- 1.1. Термодинамические состояния и термодинамические процессы
- 1.2. Внутренняя энергия и температура термодинамической системы
- 1.3. Методы измерения температуры
- 1.4. Адиабатически изолированная система
- 1.5. Первое начало термодинамики
- Глава 2. Уравнения состояния термодинамических систем.
- 2.1. Уравнение состояния идеального газа
- .2. Основные положения молекулярно-кинетической теории
- 2.3. Экспериментальные подтверждения молекулярно-кинетической теории
- 2.4. Теплоёмкость идеального газа
- 2.5. Адиабатический процесс
- 2.6. Политропический процесс
- 2.7. Газ Ван-дер-Ваальса
- Глава 3. Второе и третье начала термодинамики.
- 3.1. Тепловые машины
- 3.2. Цикл Карно
- 3.3. Расчет цикла Карно для реального газа
- 3.4. Второе начало термодинамики
- 3.5. Теорема Карно
- 3.6. Термодинамическая шкала температур
- 3.7. Неравенство Клаузиуса
- 3.8. Термодинамическая энтропия
- 3.9. Закон возрастания энтропии
- 3.10. Третье начало термодинамики
- Глава 4. Описание термодинамических процессов.
- 4.1. Основное неравенство и основное уравнение термодинамики
- 4.2. Термодинамические потенциалы
- 4.3. Применение термодинамических потенциалов для описания эффекта Джоуля-Томсона
- 4.4. Принцип Ле-Шателье - Брауна
- 4.5. Введение в термодинамику необратимых процессов
- Глава 5. Статистическое описание равновесных состояний.
- 5.1. Функция распределения
- 5.2. Распределение Больцмана
- 5.3. Принцип детального равновесия
- 5.4. Распределение Максвелла
- 5.5. Экспериментальная проверка распределения Максвелла
- 5.6. Распределение Максвелла-Больцмана
- 5.7. Каноническое распределение Гиббса
- 5.8. Равновесные флуктуации
- 5.9. Статистическое обоснование второго начала термодинамики
- Глава 6. Явление переноса.
- 6.1. Термодинамические потоки
- 6.2. Описание явлений переноса в газах
- 6.3. Эффузия в разреженном газе
- 6.4. Броуновское движение
- 6.5. Производство энтропии в необратимых процессах
- Глава 7. Равновесие фаз и фазовые превращения.
- 7.1. Агрегатные состояния вещества
- 7.2. Условия равновесия фаз
- 7.3. Явления на границе раздела газа, жидкости и твердого тела
- 7.4. Фазовые переходы первого рода
- 7.5. Диаграммы состояния
- 7.6. Фазовые переходы второго рада
- 7.7. Критические явления при фазовых переходах