logo
Физика

2.3. Экспериментальные подтверждения молекулярно-кинетической теории

     Основные положения молекулярно-кинетической теории были подвергнуты всесторонней экспериментальной проверке. Наиболее известными экспериментами, демонстрирующими молекулярную структуру вещества и подтверждающими молекулярно-кинетическую теорию, являются опыты Дюнуайе и Отто Штерна (1888 - 1969), выполненные соответственно в 1911 и 1920 годах. В этих опытах молекулярные пучки создавались путем испарения различных металлов, и поэтому молекулы исследуемых газов представляли собой атомы этих металлов. Такие эксперименты позволили проверить предсказания молекулярно-кинетической теории, которые она дает для случая газов, молекулы которых можно рассматривать как материальные точки, то есть для одноатомных газов.

     Схема опыта Дюнуайе с молекулярными пучками показана на рис. 2.4. Стеклянный сосуд, материал которого выбирался таким, чтобы обеспечивать высокий вакуум, был разделён на три отделения 1, 2 и 3 двумя перегородками с диафрагмами 4. В отделении 1 находился газ, в качестве которого в данном эксперименте были использованы пары натрия, полученные при его нагревании. Молекулы этого газа могли свободно пролетать через отверстия в диафрагмах, коллимирующие молекулярный пучок 5, то есть позволяющие ему проходить только в пределах малого телесного угла. В отделениях 2 и 3 был создан сверхвысокий вакуум, такой, чтобы атомы натрия могли пролетать их без столкновений с молекулами воздуха.

Рис. 2.4. Схема опыта Дюнуайе 1 - отделение, заполненное газом, 2 и 3 - отделения со сверхвысоким вакуумом, 4 - перегородки с диафрагмами, 5 - молекулярный пучок, 6 - след не рассеянного пучка, 7 - след рассеянных молекул

     Нерассеянный молекулярный пучок оставлял на торцевой стенке сосуда след 6. Но даже в случае сверхвысокого вакуума имело место рассеяние молекулярного пучка на краях диафрагм 4. Поэтому на торцевой стенке сосуда имелась область "полутени" 7, в которой оставляли следы частицы, претерпевшие рассеяние. По мере ухудшения вакуума в отделении 3 область 7 увеличивалась. По величине размытости следа рассеянных атомов натрия можно было оценить длину их свободного пробега. Такие оценки были проведены Максом Борном (1882 - 1970) на основании результатов опытов, аналогичных опыту Дюнуайе.

     Одними из самых знаменитых опытов с молекулярными пучками были эксперименты Штерна, в которых впервые удалось осуществить прямые измерения молекулярных скоростей. Наиболее известная схема опыта Штерна показана на рис. 2.5. Платиновая нить 1, на которую была нанесена капля серебра, находилась на оси двух коаксиальных цилиндров 2 и 3, причём в цилиндре 2 имелась щель, параллельная его оси. Цилиндры могли вращаться вокруг своей оси. В опытах Штерна угловая скорость их вращения составляла 2...3 тысячи оборотов в минуту.

Рис. 2.5. Схема опыта Штерна 1 - источник молекул, 2 и 3 - вращающиеся цилиндры, 4 - щель, ограничивающая молекулярный пучок, 5 - след молекулярного пучка

     При пропускании через платиновую нить электрического тока она разогревалась до максимальной температуры порядка 1200 oС. В результате этого серебро начинало испаряться, его атомы пролетали через щель 4 цилиндра 2 и оседали на поверхности цилиндра 3, оставляя на нём след 5. Для не вращающихся цилиндров, атомы серебра, двигаясь прямолинейно, более-менее равномерно оседали на поверхности внешнего цилиндра, внутри сектора, соответствующего прямолинейному их распространению. Вращение цилиндров приводило к искривлению траектории молекул в системе отсчёта, связанной с цилиндрами и, как следствие, к изменению положения атомов серебра, осевших на внешний цилиндр.

     Анализируя плотность осевших молекул, можно было оценить характеристики распределения молекул по скоростям, в частности, максимальную и минимальную скорости, соответствующие краям следа, а также найти наиболее вероятную скорость, соответствующую максимуму плотности осевших молекул.

     При температуре нити 1200 oС среднее значение скорости атомов серебра, полученное после обработки результатов опытов Штерна, оказалось близким к 600 м/с, что вполне соответствует значению средней квадратичной скорости, вычисленному по формуле (2.35).