Преобразование тепловой энергии
Для малых энергетических установок специального назначения, например, для бортовых источников электроэнергии космических кораблей, 8
разрабатываются и находят применение термоэлектрические и термоэмиссионные установки прямого преобразования энергии. Термоэлектрический генератор (ТЭГ) состоит из двух полупроводниковых термоэлементов с разным типом проводимости - электронной и дырочной. С одного торца эти элементы соединяются между собой коммутационной пластиной, а к свободным их торцам присоединяются электрические контакты для подключения к внешней цепи. Если торцы (спаи) элементов поддерживать при различной температуре, то возникает термоэлектродвижущая сила, пропорциональная разности температур торцов.
Когда цепь термоэлементов замкнута на внешнее сопротивление, в ней возникает электрический ток, при протекании которого в горячем спае начнёт поглощаться теплота, а в холодном - выделяться. Если пренебречь джоулевыми потерями в цепи и перетоком теплоты теплопроводностью от горячего спая к холодному, то КПД термоэлемента окажется равным КПД цикла Карно для температур, соответствующих температурам спаев. Действительные значения КПД термоэлементов и составленных из них ТЭГ существенно меньше и достигают при разностях температур между спаями в 400-500 К, в лучшем случае, нескольких процентов. Этим, а также высокой стоимостью самих термоэлементов объясняется малая распространённость ТЭГ, несмотря на их крайнюю простоту и отсутствие каких-либо движущихся частей.
Простейший термоэмиссионный преобразователь энергии (ТЭП) аналогичен двухэлектродной электронной лампе (Диоду). Если катод и анод лампы поддерживать при разных температурах, подводя к катоду теплоту и отводя её от анода, то электроны, вылетающие из катода в результате термоэлектронной эмиссии, устремятся к аноду, заряжая его отрицательно. Если анод и катод во внешней цени соединить через какое-либо сопротивление, то за счёт разности потенциалов во внешней цепи пойдёт ток. Если пренебречь необратимыми потерями, КПД ТЭП также близок к КПД соответствующего цикла Карно. Реальный же КПД ТЭП не более 7-8 процентов, прежде всего из-за больших потерь теплоты излучением между катодом, имеющим температуру около 2000 К, и анодом - около1000 К. ТЭГ и ТЭП представляют интерес в сочетании с ядерными источниками теплоты, образуя полностью статичные автономные источники электроэнергии.
Вариант 5
- Введение
- Транспортные теплосиловые установки
- Установки прямого преобразования тепловой энергии
- Преобразование тепловой энергии
- Что знали о теплоте в древности?
- Основные периоды развития теплоэнергетики
- Что такое теплота: движение или теплород?
- Теплоёмкость газов
- Тепловое движение в жидкостях и твёрдых телах
- Геотермальная энергия
- Рациональное использование тепловой энергии
- Теплоэнергетика и окружающая среда
- Второй закон термодинамики
- Перспективные разработки тепловых двигателей
- Экологические проблемы тепловой энергетики
- Цикл Карно
- Физические величины, используемые в теплотехнике
- Некоторые свойства водяного пара и воды
- Энергетика и электрогенерирующие станции
- Типы тепловых электростанций
- Что такое внутренняя энергия?
- Преимущества и недостатки тэс
- Городское теплоснабжение
- Виды топлива на тэс
- Виды тепловых электростанций
- Общее представление о тепловой электростанции
- Тепловые сети крупных городов
- Теплоэнергетика
- Что такое энтропия?
- Что такое эксергия?
- Семестровая работа студента № 5
- Рекомендуемая литература для выполнения срс № 5
- Семестровая работа № 6
- Рекомендуемая литература для выполнения срс № 6
- Список литературы
- Содержание
- 050013 Алматы, Байтурсынова,126 43