4.1. Длина свободного пробега молекулы
Молекулы в процессе теплового (хаотического) движения соударяются не только со стенкой, но и между собой. Длина пути, который молекула проходитмежду двумя последовательными столкновениями, называется длинойсвободного пробега(рис. 4.1). Конечно, свободный пробег одной молекулы все время меняется, однако для большого числа молекул можно, как обычно, говорить о средней длине пробега.
Рис. 4.1.Длина свободного пробега молекулы
Для вывода формулы рассмотрим молекулу А, движущуюся после столкновения с молекулойВ прямолинейно со скоростьюVдо нового столкновения с молекулой С. Среднее число столкновений молекулыАза времяtравно числуZстолк. Очевидно, что Zстолкравно числу молекул, которые находятся в объеме цилиндра с основанием — кругом радиуса 2dэфф, где величинаdэфф—эффективный диаметр молекулы, такое расстояние, на котором одна молекула «достает» другую при столкновении. Можно сказать и по-другому: эффективный диаметр молекул — это диаметр такого шара, что эффект (отсюда «эффективный») от столкновения с этим шаром другой молекулы будет таким же, как и при столкновении реальных «рогатых» молекул. Оба эти определения приводят к примерно одинаковым числовым значениям диаметров, и поэтому эти определения можно в первом приближении считать эквивалентными.
Эффективный диаметр различных молекул собран в таблицах справочников. Длина (высота) цилиндра, в котором находятся молекулы, сталкивающиеся с молекулой А, очевидно равнаVt. Тогда объем этого «столкновительного» цилиндра —(2dэфф)2Vt/4 (площадь основания на высоту). Приконцентрации молекул n = N/Vв таком объеме находится
(4.1)
Длина свободного пробегаl=Vτ— путь (средний) между двумя столкновениями. Соответственно,τ — время, за которое молекула проходит длину свободного пробега,время между столкновениями. Таким образом,l— это весь путьVt, деленный на число молекул (и, следовательно, столкновений) на этом путиZстолк, т. е.
(4.2)
где σ — площадь эффективного сечения (площадь круга) молекулы.
Очевидно, что длина пробега не зависит ни от времени (что можно было ожидать), ни от скорости молекулы, что предвидеть было труднее. Конечно, зная ответ, можно понять, что при большей скорости молекула пролетает эту длину быстрее, а сам путь определяется только концентрацией — количеством «препятствий». Но до получения ответа такой вывод не напрашивался.
При выводе формулы для lсчиталось, что движется только молекулаА, а другие («препятствия») покоятся. Если учесть их движение, то появится числовой коэффициент. Длина свободного пробега станет:
(4.3)
Впрочем, часто этот коэффициент включают в площадь эффективного сечения.
- Академия
- Глава 1. Идеальный газ Тема
- 1.1. Тепловые явления. Характеристики тепловых явлений
- 1.2. Свойства газа, полученные на опыте
- 1.3. Уравнение состояния идеального газа
- 1.4. Изопроцессы
- 1.4.1. Изотермический процесс
- 1.4.2. Изобарный процесс
- 1.4.3. Изохорный процесс
- 1.5. Массы, размеры, энергии в мире молекул. Основные положения молекулярно-кинетической теории
- 1.5.1. Доказательства существования молекул
- 1.5.2. Движение молекул
- 1.5.3. Взаимодействие молекул
- 1.5.4. Твердые, жидкие и газообразные тела
- 1.6. Молекулярные основы теории идеального газа
- 1.7. Основное уравнение молекулярно-кинетической теории
- 1.8. Температура — мера средней кинетической энергии молекул
- 1.9. Растворенное вещество как идеальный газ
- 1.10. Реальные газы
- Главное в главе 1
- Глава 2. Термодинамика Тема
- 2.1. Первое начало термодинамики
- 2.1.1. Изохорный процесс
- 2.1.2. Изобарный процесс
- 2.1.3. Изотермический процесс
- 2.2. Адиабатный процесс
- 2.3. Энтропия
- 2.4. Второе начало термодинамики
- Главное в главе 2
- Глава 3. Статистика молекул Тема
- 3.1. Скорости молекул. Опыт Штерна
- 3.2. Распределение молекул по скоростям
- 3.3. Вероятность
- 3.4. Распределение Больцмана
- 3.4.1. Распределения молекул под действием силы тяжести
- 3.4.2. Распределение молекул по проекциям скоростей их движения
- 3.5. Распределение Максвелла
- 3.6. Наиболее вероятная скорость. Метод анализа размерностей
- 3.7. Барометрическая формула
- 3.8. Термоэлектричество. Термопара
- 3.8.1. Электроны у поверхности металла
- 3.8.2. Контактная разность потенциалов
- Главное в главе 3
- Глава 4. Явления переноса Тема
- 4.1. Длина свободного пробега молекулы
- 4.2. Диффузия. Закон Фика
- 4.3. Диффузия как случайное блуждание
- 4.4. Теплопроводность
- 4.5. Трение. Вязкость — внутреннее трение
- Главное в главе 4
- Глава 5. Молекулярная физика жидкой и твердой фаз, явлений на границе фаз и фазовых превращений Тема
- 5.1. Поверхностное натяжение
- 5.1.1. Методы исследования поверхностного натяжения жидкости
- 5.1.2. Адсорбция
- 5.1.3. Поверхностно-активные вещества. Применение поверхностно-активных веществ в фармации
- 5.2. Давление под изогнутой поверхностью жидкости. Формула Лапласа
- 5.3. Процессы испарения и конденсации
- 5.4. Капиллярные явления
- 5.4.1. Смачивание
- 5.4.2. Зависимость давления насыщенного пара от кривизны поверхности жидкости
- 5.4.3. Капиллярная конденсация. Гигроскопические материалы
- 5.5. Твердые тела. Аморфные и кристаллические твердые тела
- 5.6. Фазы. Равновесие фаз. Фазовые переходы
- 5.6.1. Сублимация (испарение)
- 5.6.2. Плавление и кристаллизация
- 5.6.3. Размягчение и стеклование
- 5.7. Жидкокристаллическое состояние вещества
- 5.8. Кристаллические модификации
- 5.8.1. Полиморфные превращения, их роль в изменении свойств фармацевтических препаратов
- 5.9. Теплоемкость твердых тел
- 5.9.1. Закон Дюлонга и Пти
- 5.9.2. Понятие о квантовой теории твердых тел
- 5.10. Механические свойства твердых тел
- 5.10.1. Упругость и пластичность
- 5.10.2. Особенности строения и свойства эластомеров
- Главное в главе 5