1.8. Температура — мера средней кинетической энергии молекул
Для того чтобы сравнить уравнение состояния идеального газа и основное уравнение молекулярно-кинетической теории, запишем их в наиболее совпадающем виде.
Уравнение состояния идеального газа | Основное уравнение молекулярно-кинетической теории газа |
Из этих соотношений видно, что:
(1.48)
где
(1.49)
величина, которая называется постоянной Больцмана — коэффициент, позволяющий энергию движения молекул (конечно, среднюю) выражать в единицах температуры, а не только в джоулях, как до сих пор.
Как уже говорилось, «объяснить» в физике означает установить связь нового явления, в данном случае — теплового, с уже изученным — механическим движением. Это и есть объяснение тепловых явлений. Именно с целью находить такое объяснение в настоящее время разработана целая наука — статистическаяфизика. Слово «статистическая» означает, что объекты исследования — это явления, в которых участвует множество частиц со случайными (у каждой частицы) свойствами. Исследование таких объектов у человеческих множеств — народов, населения — предмет статистики.
Именно статистическая физика является основой химии как науки, а не как в поваренной книге — «слейте то и то, получится, что надо!» Почему получится? Ответ в свойствах (статистических свойствах) молекул.
Отметим, что, конечно, возможно использование найденных связей энергии движения молекул с температурой газа и в другом направлении для выявления свойства самого движения молекул, вообще свойств газа. Например, ясно, что внутри газа молекулы обладают энергией:
(1.50)
Эта энергия так и называется — внутренняя.Внутренняя энергияесть всегда! Даже когда тело покоится и не взаимодействует ни с какими другими телами, оно обладает внутренней энергией.
Если молекула — не «кругленький шарик», а представляет собой «гантель» (двухатомную молекулу), то кинетическая энергия представляет собой сумму энергии поступательного движения (только поступательное движение и рассматривалось фактически до сих пор) и вращательного движения (рис. 1.18).
Рис. 1.18.Вращение молекулы
Произвольное вращение можно представить себе как последовательное вращение сначала вокруг оси x, а затем вокруг осиz.
Запас энергии такого движения ничем не должен отличаться от запаса движения по прямой. Молекула «не знает» — летит она или крутится. Тогда во всех формулах необходимо вместо числа «три» ставить число «пять».
(1.51)
Такие газы, как азот, кислород, воздух и т. д., нужно рассматривать именно по последним формулам.
Вообще, если для строгой фиксации молекулы в пространстве нужно i чисел (говорят«i степеней свободы»), то
(1.52)
Как говорят, «по пол kTна каждую степень свободы».
- Академия
- Глава 1. Идеальный газ Тема
- 1.1. Тепловые явления. Характеристики тепловых явлений
- 1.2. Свойства газа, полученные на опыте
- 1.3. Уравнение состояния идеального газа
- 1.4. Изопроцессы
- 1.4.1. Изотермический процесс
- 1.4.2. Изобарный процесс
- 1.4.3. Изохорный процесс
- 1.5. Массы, размеры, энергии в мире молекул. Основные положения молекулярно-кинетической теории
- 1.5.1. Доказательства существования молекул
- 1.5.2. Движение молекул
- 1.5.3. Взаимодействие молекул
- 1.5.4. Твердые, жидкие и газообразные тела
- 1.6. Молекулярные основы теории идеального газа
- 1.7. Основное уравнение молекулярно-кинетической теории
- 1.8. Температура — мера средней кинетической энергии молекул
- 1.9. Растворенное вещество как идеальный газ
- 1.10. Реальные газы
- Главное в главе 1
- Глава 2. Термодинамика Тема
- 2.1. Первое начало термодинамики
- 2.1.1. Изохорный процесс
- 2.1.2. Изобарный процесс
- 2.1.3. Изотермический процесс
- 2.2. Адиабатный процесс
- 2.3. Энтропия
- 2.4. Второе начало термодинамики
- Главное в главе 2
- Глава 3. Статистика молекул Тема
- 3.1. Скорости молекул. Опыт Штерна
- 3.2. Распределение молекул по скоростям
- 3.3. Вероятность
- 3.4. Распределение Больцмана
- 3.4.1. Распределения молекул под действием силы тяжести
- 3.4.2. Распределение молекул по проекциям скоростей их движения
- 3.5. Распределение Максвелла
- 3.6. Наиболее вероятная скорость. Метод анализа размерностей
- 3.7. Барометрическая формула
- 3.8. Термоэлектричество. Термопара
- 3.8.1. Электроны у поверхности металла
- 3.8.2. Контактная разность потенциалов
- Главное в главе 3
- Глава 4. Явления переноса Тема
- 4.1. Длина свободного пробега молекулы
- 4.2. Диффузия. Закон Фика
- 4.3. Диффузия как случайное блуждание
- 4.4. Теплопроводность
- 4.5. Трение. Вязкость — внутреннее трение
- Главное в главе 4
- Глава 5. Молекулярная физика жидкой и твердой фаз, явлений на границе фаз и фазовых превращений Тема
- 5.1. Поверхностное натяжение
- 5.1.1. Методы исследования поверхностного натяжения жидкости
- 5.1.2. Адсорбция
- 5.1.3. Поверхностно-активные вещества. Применение поверхностно-активных веществ в фармации
- 5.2. Давление под изогнутой поверхностью жидкости. Формула Лапласа
- 5.3. Процессы испарения и конденсации
- 5.4. Капиллярные явления
- 5.4.1. Смачивание
- 5.4.2. Зависимость давления насыщенного пара от кривизны поверхности жидкости
- 5.4.3. Капиллярная конденсация. Гигроскопические материалы
- 5.5. Твердые тела. Аморфные и кристаллические твердые тела
- 5.6. Фазы. Равновесие фаз. Фазовые переходы
- 5.6.1. Сублимация (испарение)
- 5.6.2. Плавление и кристаллизация
- 5.6.3. Размягчение и стеклование
- 5.7. Жидкокристаллическое состояние вещества
- 5.8. Кристаллические модификации
- 5.8.1. Полиморфные превращения, их роль в изменении свойств фармацевтических препаратов
- 5.9. Теплоемкость твердых тел
- 5.9.1. Закон Дюлонга и Пти
- 5.9.2. Понятие о квантовой теории твердых тел
- 5.10. Механические свойства твердых тел
- 5.10.1. Упругость и пластичность
- 5.10.2. Особенности строения и свойства эластомеров
- Главное в главе 5