4.3. Диффузия как случайное блуждание
Закон Фика говорит лишь о приросте числа частиц (или массы), который происходит при рассматриваемом процессе переноса — диффузии. Часто, однако, важно знать и расстояние (конечно, среднее), на которое проникнут молекулы одного вещества в другое за какое-то время t.
В силу беспорядочности движения молекула продвигается в нужном (выделенном) направлении лишь случайно, поэтому такое движение называется случайным блужданием.
Рассмотрим случайное блуждание вдоль прямой (рис. 4.3). Это такое движение, при котором молекула может двигаться только вправо или влево, а конкретное направление выбирается случайно, например, подбрасывание монеты: выпадает орел — идет вправо, решка — влево.
Рис. 4.3.Случайное блуждание на прямой
Ясно, что при «одном движении» молекула продвигается (в среднем) на расстояние, равное длине свободного пробега. Так как вероятность, что молекула сдвинется вправо (на +l) такая же, как и вероятность движения влево (на –l), то при большом числеNтаких движений
(4.15)
Каждой «положительной» xi=lнайдется своя отрицательнаяxk=–l.
Отсюда следует, что среднее смещение (алгебраическая сумма)равно нулю:
(4.16)
Точно такая же ситуация была и со средней скоростью хаотического движения, которая рассматривалась при выводе основного уравнения молекулярно-кинетической теории.
Займемся теперь вычислением средних квадратов смещений. Очевидно, что
(4.17)
Для следующего шага х2=х1±lимеем в среднем
(4.18)
Использовались, во-первых, предыдущая формула, а во-вторых, что среднее значение, как только что было установлено (см. формулу (4.16)), равно нулю. Так можно делать и дальше для третьего, четвертого и т. д. шагов:
(4.19)
(4.20)
Возникает естественный результат, а именно среднийквадрат смещенияравен
(4.21)
где N — число шагов. Эта формула подобна формуле для внутренней энергии , где= m0V2/2 определяется средним квадратом скорости.
Свяжем теперь число шагов Nсо временемt, за которое они совершены. Для этого нужно ввестивремя одного шагаτ. В среднемτ=t/N. С другой стороны,среднее время одного смещения(шага)τможно определить издлинысвободного пробега:
l = Vτ. (4.22)
Время τ— это время между двумя столкновениями (на прямой это время между двумя поворотами). Число столкновений в единице времени
(4.23)
Подставляя N=t/τв формулусреднего квадрата смещения, получим
(4.24)
Отсюда видно, что коэффициент пропорциональности между средним квадратом смещения (но не квадратом среднего смещения, который равен нулю) и временем, за которое это смещение происходит, является коэффициентом диффузии
(4.25)
Среднее (среднеквадратичное) смещение молекул диффузиейбудет
(4.26)
Числовой множитель определяется «размерностью» пространства, в котором происходят блуждания. При блужданиях на плоскости будет D=Vl/2, а в трехмерном пространстве пришли бы к выведенному ранее значениюD=Vl/3.
Полученная формула позволяет оценить, насколько отклонится от начального положения точка при случайном блуждании.
Обычный «пешеход» продвигается не спеша с V=3,6 км/час=1 м/с, но широким шагомl=1 м. Заt=1 ч пешеход уйдет на расстояниех=3600 м, т. е. далеко. Но не очень «трезвый» гражданин, совершая случайные блуждания на плоскости, уйдет в случайном направлении на расстояние. Это не далеко. Именно в соответствии с формулой, описывающей случайные блуждания, медленно распространяются запахи, хотя скорости движения молекул огромны. Как говорится, на кухне все давно сгорело, а в комнате еще и не пахнет жареным. Почему? По законам диффузного движения — случайных блужданий.
- Академия
- Глава 1. Идеальный газ Тема
- 1.1. Тепловые явления. Характеристики тепловых явлений
- 1.2. Свойства газа, полученные на опыте
- 1.3. Уравнение состояния идеального газа
- 1.4. Изопроцессы
- 1.4.1. Изотермический процесс
- 1.4.2. Изобарный процесс
- 1.4.3. Изохорный процесс
- 1.5. Массы, размеры, энергии в мире молекул. Основные положения молекулярно-кинетической теории
- 1.5.1. Доказательства существования молекул
- 1.5.2. Движение молекул
- 1.5.3. Взаимодействие молекул
- 1.5.4. Твердые, жидкие и газообразные тела
- 1.6. Молекулярные основы теории идеального газа
- 1.7. Основное уравнение молекулярно-кинетической теории
- 1.8. Температура — мера средней кинетической энергии молекул
- 1.9. Растворенное вещество как идеальный газ
- 1.10. Реальные газы
- Главное в главе 1
- Глава 2. Термодинамика Тема
- 2.1. Первое начало термодинамики
- 2.1.1. Изохорный процесс
- 2.1.2. Изобарный процесс
- 2.1.3. Изотермический процесс
- 2.2. Адиабатный процесс
- 2.3. Энтропия
- 2.4. Второе начало термодинамики
- Главное в главе 2
- Глава 3. Статистика молекул Тема
- 3.1. Скорости молекул. Опыт Штерна
- 3.2. Распределение молекул по скоростям
- 3.3. Вероятность
- 3.4. Распределение Больцмана
- 3.4.1. Распределения молекул под действием силы тяжести
- 3.4.2. Распределение молекул по проекциям скоростей их движения
- 3.5. Распределение Максвелла
- 3.6. Наиболее вероятная скорость. Метод анализа размерностей
- 3.7. Барометрическая формула
- 3.8. Термоэлектричество. Термопара
- 3.8.1. Электроны у поверхности металла
- 3.8.2. Контактная разность потенциалов
- Главное в главе 3
- Глава 4. Явления переноса Тема
- 4.1. Длина свободного пробега молекулы
- 4.2. Диффузия. Закон Фика
- 4.3. Диффузия как случайное блуждание
- 4.4. Теплопроводность
- 4.5. Трение. Вязкость — внутреннее трение
- Главное в главе 4
- Глава 5. Молекулярная физика жидкой и твердой фаз, явлений на границе фаз и фазовых превращений Тема
- 5.1. Поверхностное натяжение
- 5.1.1. Методы исследования поверхностного натяжения жидкости
- 5.1.2. Адсорбция
- 5.1.3. Поверхностно-активные вещества. Применение поверхностно-активных веществ в фармации
- 5.2. Давление под изогнутой поверхностью жидкости. Формула Лапласа
- 5.3. Процессы испарения и конденсации
- 5.4. Капиллярные явления
- 5.4.1. Смачивание
- 5.4.2. Зависимость давления насыщенного пара от кривизны поверхности жидкости
- 5.4.3. Капиллярная конденсация. Гигроскопические материалы
- 5.5. Твердые тела. Аморфные и кристаллические твердые тела
- 5.6. Фазы. Равновесие фаз. Фазовые переходы
- 5.6.1. Сублимация (испарение)
- 5.6.2. Плавление и кристаллизация
- 5.6.3. Размягчение и стеклование
- 5.7. Жидкокристаллическое состояние вещества
- 5.8. Кристаллические модификации
- 5.8.1. Полиморфные превращения, их роль в изменении свойств фармацевтических препаратов
- 5.9. Теплоемкость твердых тел
- 5.9.1. Закон Дюлонга и Пти
- 5.9.2. Понятие о квантовой теории твердых тел
- 5.10. Механические свойства твердых тел
- 5.10.1. Упругость и пластичность
- 5.10.2. Особенности строения и свойства эластомеров
- Главное в главе 5