29. Тепловые двигатели и холодильные машины. Паровой двигатель, двигатель внутреннего сгорания, турбина холодильник.
Из формулировки второго начала термодинамики по Кельвину следует, что вечный двигатель второго рода — периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты, — невозможен. Для иллюстрации этого положения рассмотрим работу теплового двигателя (исторически второе начало термодинамики и возникло из анализа работы тепловых двигателей).
Принцип действия теплового двигателя приведен на рис. 85.
От термостата с более высокой температурой Т1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником, за цикл передается количество теплоты Q2, при этом совершается работа А = Q1 – Q2.
Чтобы термический коэффициент полезного действия теплового двигателя был равен 1, необходимо выполнение условия Q2 = 0, т. е. тепловой двигатель должен иметь один источник теплоты, а это невозможно.
Процесс, обратный происходящему в тепловом двигателе, используется в холодильной машине, принцип действия которой представлен на рис. 86.
Системой за цикл от термостата с более низкой температурой Т2 отнимается количество теплоты Q2 и отдается термостату с более высокой температурой Т1 количество теплоты Q1. Для кругового процесса, согласно (56.1), Q=A, но, по условию, Q = Q2 – Q1 < 0, поэтому А<0 и Q2 – Q1 = –А, или Q1 = Q2 + A, т. е. количество теплоты Q1, отданное системой источнику теплоты при более высокой температуре T1 больше количества теплоты Q2, полученного от источника теплоты при более низкой температуре T2, на величину работы, совершенной над системой. Следовательно, без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому. Это утверждение есть не что иное, как второе начало термодинамики в формулировке Клаузиуса.
Однако второе начало термодинамики не следует представлять так, что оно совсем запрещает переход теплоты от менее нагретого тела к более нагретому. Ведь именно такой переход осуществляется в холодильной машине. Но при этом надо помнить, что внешние силы совершают работу над системой, т. е. этот переход не является единственным результатом процесса.
Основываясь на втором начале термодинамики, Карно вывел теорему, носящую теперь его имя: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (T1) и холодильников (T2), наибольшим к. п. д. обладают обратимые машины; при этом к. п. д. обратимых машин, работающих при одинаковых температурах нагревателей (T1) и холодильников (T2), равны друг другу и не зависят от природы рабочего тела (тела, совершающего круговой процесс и обменивающегося энергией с другими телами), а определяются только температурами нагревателя и холодильника.
Паровой двигатель
Это двигатель, приводимый в действие силой пара. Пар, получаемый путем нагрева воды, используют для движения. В некоторых двигателях сила пара заставляет двигаться поршни, расположенные в цилиндрах. Т.о. создается возвратно-поступательное движение. Подсоединенный механизм обычно преобразует его во вращательное движение. В паровозах (локомотивах) используются поршневые двигатели. В качестве двигателей используют также паровые турбины, которые дают непосредственно вращательное движение, вращая ряд колес с лопатками. Паровые турбины приводят в действие генераторы электростанций и винты кораблей. В любом паровом двигателе происходит превращение тепла, вырабатываемого при нагреве воды в паровом котле (бойлере) в энергию движения. Тепло может подаваться от сжигания топлива в печи или от атомного реактора.
Паровые двигатели, такие как раньше использовались в локомотивах, работают на производимом при нагревании воды паре. Угольная или дровяная топка (1) нагревает котел, напол-ненный водой (2), который производит пар. Пар поднимается и через сухопарник(3) выталкивается через трубы в цилиндр (4), где он вызывает обратное движение поршня (5). Связанный с поршнем рычаг (6) это золотниковый клапан (7), который сначала позволяет пару попасть в цилиндр (как показано), закрывая выпускное окно (8). Это создает давление, которое двигает поршень вперед и приводит к тому, что золотниковый клапан становится в такое положение, когда выпускное окно открывается и пар выходит наружу. Движение колес заставляет поршень двигаться назад, и все начинается снова.
Двигатель внутреннего сгорания
Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.
30.Цикл Карно и его кпд для идеального газа.
Пусть тепловая машина состоит из нагревателя с температурой Тн, холодильника с температурой Тк и рабочего тела.
Цикл Карно состоит из четырёх стадий:
Изотермическое расширение. В начале процесса рабочее тело имеет температуру Тн, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Qн. При этом объём рабочего тела увеличивается.
Адиабатическое (изоэнтропическое) расширение . Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты .
Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.
При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия:
при
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
.
Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику
.
Отсюда коэффициент полезного действия тепловой машины Карно равен
.
Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника.
31.Уравнение Ван-Дер-Ваальса. Изотермы Ван-Дер-Ваальса и их анализ. Внутренняя энергия реального газа.
Ван-дер-Ваальсом в уравнение Клапейрона — Менделеева введены две поправки.
1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm, а Vm — b, где b — объем, занимаемый самими молекулами.
Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d, т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в расчете на одну молекулу.
2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е. где а — постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm — молярный объем.
Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):
Для произвольного количества вещества v газа (v=m/M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид
где поправки а и b — постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b).
Изотермы Ван-дер-Ваальса — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса для моля газа. Эти кривые имеют довольно своеобразный характер. При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.
Эта изотерма называется критической, соответствующая ей температура Tк — критической температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими параметрами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.
Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса к виду
Уравнение при заданных р и Т является уравнением третьей степени относительно Vm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газа V1, V2 и V3 отвечают (символ «m» для простоты опускаем) одному значению давления р1), второму случаю — изотермы при высоких температурах.
Рассматривая различные участки изотермы при T<Тк (рис. 90), видим, что на участках 1—3 и 5—7 при уменьшении объема Vm давление р возрастает, что естественно. На участке 3—5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3—5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7—6—2—1. Часть 6–7 отвечает газообразному состоянию, а часть 2–1 — жидкому. В состояниях, соответствующих горизонтальному участку изотермы 6—2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.
Для нахождения критических параметров подставим их значения в уравнение
(символ «m» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равны Vк уравнение приводится к виду
или
Tax как уравнения тождественны, то в них должны быть равны и коэффициенты при неизвестных соответствующих степеней. Поэтому можно записать
Решая полученные уравнения, найдем
Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму р,Vm под изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа — область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.
Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 2—6, соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5—6 и 2—3. Эти неустойчивые состояния называются метастабильными. Участок 2—3 изображает перегретую жидкость, 5—6 — пересыщенный пар. Обе фазы ограниченно устойчивы.
При достаточно низких температурах изотерма пересекает ось Vm, переходя в область отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицательным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок 8—9 на нижней изотерме соответствует перегретой жидкости, участок 9—10 — растянутой жидкости.
Yandex.RTB R-A-252273-3
- Сила тяжести:
- Сила упругости:
- Сила трения:
- 4 Вида взаимодействий в природе:
- 6. Работа, энергия и мощность силы в поступательном и вращательном движениях. Кинетическая энергия и работа сил.
- 1.Работа и работа сил
- 7. Консервативные и диссипативные сила. Потенциальное поле. Потенциальная энергия упругой силы. Работа по растяжению и сжатию пружины.
- 1.Консервативная и Диссипативная сила. Потенциальное поле.
- 2.Потенциальная энергия упругой силы и работа по растяжению и сжатию пружины.
- 8. Консервативные и диссипативные силы. Потенциальное поле. Потенциальная энергия гравитационной силы. Работа по поднятию тела.
- 1.Консервативная и Диссипативная сила. Потенциальное поле.
- 9.Полная механическая энергия. Закон сохранения механической энергии. Работа в замкнутой системе и работа под действием внешних сил.
- 10)Момент инерции материальной токи, системы и твёрдого тела. Формулы расчета моментов инерции разных симметричных тел. Теорема штейнера.
- 11)Момент силы. Основное уравнение динамики вращающегося твёрдого тела. Условия равновесия твёрдого тела.
- 12)Кинетическая энергия вращающегося твердого тела, закреплённого в точке. Процессия. Гироскопы.
- 13.Скатывание с горки 2ух цилиндров, пустого и сплошного.
- 14.Кинематическое описание движения жидкости. Уравнение движения и равновесия жидкости. Идеальная жидкость.
- 15.Стационарное течение идеальной жидкости. Уравнение Бернулли.
- 16.Вязкая жидкость. Формула Стокса. Турбулентное и ламинарное течение. Число Рейнольдса.
- 17.Поверхностная энергия и натяжение. Капиллярные явления. Поверхностная энергия
- 18.Гармонические колебания и их характеристики. Скорость и ускорение гармонических колебаний. Энергия гармонический колебаний. Способы графического представления колебаний.
- Сложение взаимно перпендикулярных колебаний
- 20)Гармонический осциллятор. Собственные колебания математического, физического и пружинного маятника
- 21)Гармонический осциллятор. Затухающие колебания и их характеристики.
- 22) Гармонический осциллятор. Вынужденные колебания, дифференциальное уравнение вынужденных колебаний и его решение. Резонанс.
- 23) Волны в упругой среде. Поперечные и продольные волны. Уравнение волны и основные характеристики.
- 24) Стоячие волны. Амплитуда стоячей волны. Узлы и пучности. Длина стоячей волны.
- 26. Теплоемкость. Применение первого начала к изопроцессам: изобарный. Изохорный, изотермический.
- 27. Применение первого начала к изопроцессам: адиабатический процесс.
- 28. Второе начало термодинамики и его применение к тому, что теплота всегда переходит от более нагретого тела к менее нагретому.
- 29. Тепловые двигатели и холодильные машины. Паровой двигатель, двигатель внутреннего сгорания, турбина холодильник.
- 32.Эффект Джоуля-Томпсона. Сжижение газов. Фазовые переходы первого и второго родов.
- § 65. Сжижение газов
- Фазовые переходы I и п рода