11)Момент силы. Основное уравнение динамики вращающегося твёрдого тела. Условия равновесия твёрдого тела.
Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):
Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы
где — угол между r и F; r sin = l — кратчайшее расстояние между линией действия силы и точкой О — плечо силы.
Моментом силы относительно неподвижной оси z называется скалярная величина Mz , равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента Мz не зависит от выбора положения точки О на оси z.
Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:
выражение для работы при вращении тела:
Пусть сила F приложена в точке В, находящейся от оси z на расстоянии r, — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол d точка приложения В проходит путь ds=rd и работа равна произведению проекции силы на направление смещения на величину смещения:
можем записать
где Frsin = Fl =Mz — момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.
Работа при вращении тела идет на увеличение его кинетической энергии: dA=dT, но поэтому Mzd = Jzd, или
Учитывая, что получаем
(18.3)
Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.
Можно показать, что если ось z совпадает с главной осью инерции (см. § 20), проходящей через центр масс, то имеет место векторное равенство
(18.4)
где J — главный момент инерции тела (момент инерции относительно главной оси).
Yandex.RTB R-A-252273-3
- Сила тяжести:
- Сила упругости:
- Сила трения:
- 4 Вида взаимодействий в природе:
- 6. Работа, энергия и мощность силы в поступательном и вращательном движениях. Кинетическая энергия и работа сил.
- 1.Работа и работа сил
- 7. Консервативные и диссипативные сила. Потенциальное поле. Потенциальная энергия упругой силы. Работа по растяжению и сжатию пружины.
- 1.Консервативная и Диссипативная сила. Потенциальное поле.
- 2.Потенциальная энергия упругой силы и работа по растяжению и сжатию пружины.
- 8. Консервативные и диссипативные силы. Потенциальное поле. Потенциальная энергия гравитационной силы. Работа по поднятию тела.
- 1.Консервативная и Диссипативная сила. Потенциальное поле.
- 9.Полная механическая энергия. Закон сохранения механической энергии. Работа в замкнутой системе и работа под действием внешних сил.
- 10)Момент инерции материальной токи, системы и твёрдого тела. Формулы расчета моментов инерции разных симметричных тел. Теорема штейнера.
- 11)Момент силы. Основное уравнение динамики вращающегося твёрдого тела. Условия равновесия твёрдого тела.
- 12)Кинетическая энергия вращающегося твердого тела, закреплённого в точке. Процессия. Гироскопы.
- 13.Скатывание с горки 2ух цилиндров, пустого и сплошного.
- 14.Кинематическое описание движения жидкости. Уравнение движения и равновесия жидкости. Идеальная жидкость.
- 15.Стационарное течение идеальной жидкости. Уравнение Бернулли.
- 16.Вязкая жидкость. Формула Стокса. Турбулентное и ламинарное течение. Число Рейнольдса.
- 17.Поверхностная энергия и натяжение. Капиллярные явления. Поверхностная энергия
- 18.Гармонические колебания и их характеристики. Скорость и ускорение гармонических колебаний. Энергия гармонический колебаний. Способы графического представления колебаний.
- Сложение взаимно перпендикулярных колебаний
- 20)Гармонический осциллятор. Собственные колебания математического, физического и пружинного маятника
- 21)Гармонический осциллятор. Затухающие колебания и их характеристики.
- 22) Гармонический осциллятор. Вынужденные колебания, дифференциальное уравнение вынужденных колебаний и его решение. Резонанс.
- 23) Волны в упругой среде. Поперечные и продольные волны. Уравнение волны и основные характеристики.
- 24) Стоячие волны. Амплитуда стоячей волны. Узлы и пучности. Длина стоячей волны.
- 26. Теплоемкость. Применение первого начала к изопроцессам: изобарный. Изохорный, изотермический.
- 27. Применение первого начала к изопроцессам: адиабатический процесс.
- 28. Второе начало термодинамики и его применение к тому, что теплота всегда переходит от более нагретого тела к менее нагретому.
- 29. Тепловые двигатели и холодильные машины. Паровой двигатель, двигатель внутреннего сгорания, турбина холодильник.
- 32.Эффект Джоуля-Томпсона. Сжижение газов. Фазовые переходы первого и второго родов.
- § 65. Сжижение газов
- Фазовые переходы I и п рода