6.5. Производство энтропии в необратимых процессах
При протекании необратимых термодинамических процессов происходит возрастание энтропии. Производство энтропиив единичном объеме при протеканииразличных процессов можно вычислить с помощью выражения(4.87), полученного в параграфе 4.5:
, | (6.49) |
где: -термодинамические силы, - соответствующие имплотности термодинамических потоков. Тогда производство энтропии внутри выделенного объема среды определяется с помощью формулы
. | (6.50) |
Получим выражения, позволяющие рассчитывать производство энтропии при протекании рассмотренных выше необратимых процессов в газах: переноса теплоты (теплопроводности) и переноса импульса (вязкости). В соответствии с полученными в параграфе 6.2 выражениями, плотности термодинамических потоков в указанных процессах имеют вид:
, | (6.51) |
, | (6.52) |
где: и- коэффициенты теплопроводности и вязкости,и- температура и скорость течения газа соответственно.
Для рассматриваемого случая термодинамики линейных необратимых процессов без учета взаимного влияния различных процессов друг на друга соотношение между термодинамическими силами и потоками имеет линейную зависимость
, | (6.53) |
где - кинетические коэффициенты, пропорциональные введенным выше коэффициентам теплопроводности и вязкости. Они имеют вид:
, | (6.54) |
. | (6.55) |
Тогда выражения для термодинамических сил примут форму:
, | (6.56) |
, | (6.57) |
а соответствующие формулы для расчета производства энтропии принимают вид
, | (6.58) |
. | (6.59) |
Анализ полученных выражений показывает, что при протекании необратимых процессов теплопроводности и вязкости производство энтропии является положительной величиной. Если газ находится в равновесном состоянии, которое характеризуется постоянством параметров состояния (в данном случае, если и), то в такой среде будут отсутствовать термодинамические потоки и производство энтропии станет равным нулю.
Задача 6.3. Определить производство энтропии в газе, находящимся между двумя плоскими стенками, имеющими температуры и . Считать, что расстояние между стенками много меньше линейных размеров стенок.
Решение: Так как, если пренебречь краевыми эффектами, плотность потока теплоты во всех точках газа между близко расположенными друг к другу стенками должна быть одинаковой, то в установившемся режиме на основании выражения (6.23) можно записать:
или после интегрирования
,
где константы и могут быть определены из граничных условий и . Тогда имеем:
,
.
Подстановка этих выражений в формулу (6.58) дает
.
Из полученного выражения следует, что в разных точках газа производство энтропии различно.
Производство энтропии внутри всего газа, расположенного между стенками, можно вычислить с помощью формулы (6.50):
,
где - площадь поверхности стенки.
Такой же результат можно получить и воспользовавшись для определения производства энтропии непосредственно выражением (3.52):
,
где - поток теплоты , взятый с обратным знаком:
.
Подстановка этого выражения в предыдущую формулу позволяет получить следующее выражение
,
которое полностью совпадает с формулой, полученной выше первым способом.
- Глава 1. Первое начало термодинамики
- 1.1. Термодинамические состояния и термодинамические процессы
- 1.2. Внутренняя энергия и температура термодинамической системы
- 1.3. Методы измерения температуры
- 1.4. Адиабатически изолированная система
- 1.5. Первое начало термодинамики
- Глава 2. Уравнения состояния термодинамических систем.
- 2.1. Уравнение состояния идеального газа
- .2. Основные положения молекулярно-кинетической теории
- 2.3. Экспериментальные подтверждения молекулярно-кинетической теории
- 2.4. Теплоёмкость идеального газа
- 2.5. Адиабатический процесс
- 2.6. Политропический процесс
- 2.7. Газ Ван-дер-Ваальса
- Глава 3. Второе и третье начала термодинамики.
- 3.1. Тепловые машины
- 3.2. Цикл Карно
- 3.3. Расчет цикла Карно для реального газа
- 3.4. Второе начало термодинамики
- 3.5. Теорема Карно
- 3.6. Термодинамическая шкала температур
- 3.7. Неравенство Клаузиуса
- 3.8. Термодинамическая энтропия
- 3.9. Закон возрастания энтропии
- 3.10. Третье начало термодинамики
- Глава 4. Описание термодинамических процессов.
- 4.1. Основное неравенство и основное уравнение термодинамики
- 4.2. Термодинамические потенциалы
- 4.3. Применение термодинамических потенциалов для описания эффекта Джоуля-Томсона
- 4.4. Принцип Ле-Шателье - Брауна
- 4.5. Введение в термодинамику необратимых процессов
- Глава 5. Статистическое описание равновесных состояний.
- 5.1. Функция распределения
- 5.2. Распределение Больцмана
- 5.3. Принцип детального равновесия
- 5.4. Распределение Максвелла
- 5.5. Экспериментальная проверка распределения Максвелла
- 5.6. Распределение Максвелла-Больцмана
- 5.7. Каноническое распределение Гиббса
- 5.8. Равновесные флуктуации
- 5.9. Статистическое обоснование второго начала термодинамики
- Глава 6. Явление переноса.
- 6.1. Термодинамические потоки
- 6.2. Описание явлений переноса в газах
- 6.3. Эффузия в разреженном газе
- 6.4. Броуновское движение
- 6.5. Производство энтропии в необратимых процессах
- Глава 7. Равновесие фаз и фазовые превращения.
- 7.1. Агрегатные состояния вещества
- 7.2. Условия равновесия фаз
- 7.3. Явления на границе раздела газа, жидкости и твердого тела
- 7.4. Фазовые переходы первого рода
- 7.5. Диаграммы состояния
- 7.6. Фазовые переходы второго рада
- 7.7. Критические явления при фазовых переходах