1.1. Термодинамические состояния и термодинамические процессы
В курсе механики было введено понятие физической системы (системы тел), для описания изменений которой используются законы динамики. Такую систему называют механической системой. Когда кроме законов механики требуется применение законов термодинамики, систему называют термодинамической системой. Необходимость использования этого понятия возникает, если число элементов системы (например, число молекул газа) весьма велико, и движение отдельных её элементов является микроскопическим по сравнению с движением самой системы или ее макроскопических составных частей. При этом термодинамика описывает макроскопические движения (изменения макроскопических состояний) термодинамической системы.
Параметры, описывающие такое движение (изменения) термодинамической системы, принято разделять на внешние и внутренние. Это разделение весьма условно и зависит от конкретной задачи. Так, например, газ в воздушном шаре с эластичной оболочкой в качестве внешнего параметра имеет давление окружающего воздуха, а для газа в сосуде с жёсткой оболочкой внешним параметром является объём, ограниченный этой оболочкой. В термодинамической системе объём и давление могут изменяться независимо друг от друга. Для теоретического описания их изменения необходимо введение как минимум еще одного параметра - температуры.
В большинстве термодинамических задач трёх параметров достаточно для описания состояния термодинамической системы. В этом случае изменения в системе описываются с помощью трёх термодинамических координат, связанных с соответствующими термодинамическими параметрами.
Равновесным состоянием - состоянием термодинамического равновесия - называется такое состояния термодинамической системы, в котором отсутствуют всякие потоки (энергии, вещества, импульса и т.д.), а макроскопические параметры системы являются установившимися и не изменяются во времени.
Классическая термодинамика утверждает, что изолированная термодинамическая система (предоставленная себе самой) стремится к состоянию термодинамического равновесия и после его достижения не может самопроизвольно из него выйти. Данное утверждение часто называю нулевым началом термодинамики.
Системы, находящиеся в состоянии термодинамического равновесия, обладают следующими свойствами:
Если две термодинамические системы, имеющие тепловой контакт, находятся в состоянии термодинамического равновесия, то и совокупная термодинамическая система находится в состоянии термодинамического равновесия.
Если какая-либо термодинамическая система находится в термодинамическом равновесии с двумя другими системами, то и эти две системы находятся в термодинамическом равновесии друг с другом.
Далее, если не будет специально оговорено, нами будут рассматриваться термодинамические системы, находящиеся в состоянии термодинамического равновесия. Описание систем, находящихся в неравновесном состоянии, то есть в состоянии, когда имеют место макроскопические потоки, занимается неравновесная термодинамика, краткое изложение основных положений которой приведено в четвертой и шестой главах.
Переход из одного термодинамического состояния в другое называется термодинамическим процессом. Ниже, если не будет особо оговорено, будут рассматриваться только квазистатические процессы или, что то же самое, квазиравновесные процессы. Предельным случаем квазиравновесного процесса является происходящий бесконечно медленно равновесный процесс, состоящий из непрерывно следующих друг за другом состояний термодинамического равновесия. Реально такой процесс протекать не может, однако если макроскопические изменения в системе происходят достаточно медленно (за промежутки времени, значительно превышающие время установления термодинамического равновесия), появляется возможность аппроксимировать реальный процесс квазистатическим (квазиравновесным). Такая аппроксимация позволяет проводить вычисления с достаточно высокой точностью для большого класса практических задач. Равновесный процесс является обратимым, то есть таким, при котором возвращение к значениям параметров состояния, имевшим место в предыдущий момент времени, должно приводить термодинамическую систему в предыдущее состояние без каких-либо изменений в окружающих систему телах.
Практическое применение квазиравновесных процессов в каких-либо технических устройствах малоэффективно. Так, использование в тепловой машине квазиравновесного процесса, например, происходящего при практически постоянной температуре (см. описание цикла Карно в третьей главе), неминуемо приводит к тому, что такая машина будет работать очень медленно (в пределе - бесконечно медленно) и иметь очень малую мощность. Поэтому на практике квазиравновесные процессы в технических устройствах не используются. Тем не менее, так как предсказания равновесной термодинамики для реальных систем с достаточно высокой точностью совпадают с экспериментально полученными для таких систем данными, то она широко применяется для расчета термодинамических процессов в различных технических устройствах.
Если в ходе термодинамического процесса система возвращается в исходное состояние, то такой процесс называется круговым или циклическим. Круговые процессы, также как и любые другие термодинамические процессы, могут быть как равновесными (а следовательно - обратимыми), так и неравновесными (необратимыми). При обратимом круговом процессе после возвращения термодинамической системы в исходное состояние в окружающих ее телах не возникает никаких термодинамических возмущений, и их состояния остаются равновесными. В этом случае внешние параметры системы после осуществления циклического процесса возвращаются к своим исходным значениям. При необратимом круговом процессе после его завершения окружающие тела переходят в неравновесные состояния и внешние параметры термодинамической системы изменяются.
- Глава 1. Первое начало термодинамики
- 1.1. Термодинамические состояния и термодинамические процессы
- 1.2. Внутренняя энергия и температура термодинамической системы
- 1.3. Методы измерения температуры
- 1.4. Адиабатически изолированная система
- 1.5. Первое начало термодинамики
- Глава 2. Уравнения состояния термодинамических систем.
- 2.1. Уравнение состояния идеального газа
- .2. Основные положения молекулярно-кинетической теории
- 2.3. Экспериментальные подтверждения молекулярно-кинетической теории
- 2.4. Теплоёмкость идеального газа
- 2.5. Адиабатический процесс
- 2.6. Политропический процесс
- 2.7. Газ Ван-дер-Ваальса
- Глава 3. Второе и третье начала термодинамики.
- 3.1. Тепловые машины
- 3.2. Цикл Карно
- 3.3. Расчет цикла Карно для реального газа
- 3.4. Второе начало термодинамики
- 3.5. Теорема Карно
- 3.6. Термодинамическая шкала температур
- 3.7. Неравенство Клаузиуса
- 3.8. Термодинамическая энтропия
- 3.9. Закон возрастания энтропии
- 3.10. Третье начало термодинамики
- Глава 4. Описание термодинамических процессов.
- 4.1. Основное неравенство и основное уравнение термодинамики
- 4.2. Термодинамические потенциалы
- 4.3. Применение термодинамических потенциалов для описания эффекта Джоуля-Томсона
- 4.4. Принцип Ле-Шателье - Брауна
- 4.5. Введение в термодинамику необратимых процессов
- Глава 5. Статистическое описание равновесных состояний.
- 5.1. Функция распределения
- 5.2. Распределение Больцмана
- 5.3. Принцип детального равновесия
- 5.4. Распределение Максвелла
- 5.5. Экспериментальная проверка распределения Максвелла
- 5.6. Распределение Максвелла-Больцмана
- 5.7. Каноническое распределение Гиббса
- 5.8. Равновесные флуктуации
- 5.9. Статистическое обоснование второго начала термодинамики
- Глава 6. Явление переноса.
- 6.1. Термодинамические потоки
- 6.2. Описание явлений переноса в газах
- 6.3. Эффузия в разреженном газе
- 6.4. Броуновское движение
- 6.5. Производство энтропии в необратимых процессах
- Глава 7. Равновесие фаз и фазовые превращения.
- 7.1. Агрегатные состояния вещества
- 7.2. Условия равновесия фаз
- 7.3. Явления на границе раздела газа, жидкости и твердого тела
- 7.4. Фазовые переходы первого рода
- 7.5. Диаграммы состояния
- 7.6. Фазовые переходы второго рада
- 7.7. Критические явления при фазовых переходах