4.5. Введение в термодинамику необратимых процессов
Применение законов равновесной термодинамики ограничено случаем, когда температура , давлениеи другие параметры состояния во всех точках системы одинаковы. Если это не так, то в термодинамической системе возникают необратимые процессы.
Для описания необратимых процессов можно воспользоваться гипотезой локального равновесия, заключающейся в предположении, что внутри малого объема среды выполняется основное уравнение термодинамики равновесных процессов. Если в качестве параметров состояния ввести локальную плотность внутренней энергии , приходящуюся на единицу массы среды, и удельный объем, где- локальная плотность среды, то для точки среды с координатамив момент времениможно записать уравнение
. | (4.82) |
Здесь - удельная энтропия на единицу массы среды.
Тогда внутренняя энергия всей системы определяется с помощью выражения
, | (4.83) |
а ее энтропия соответственно может быть найдена по формуле
. | (4.84) |
Совместное применение уравнения (4.82) с уравнениями баланса массы, внутренней энергии и других термодинамических величин, позволяет построить феноменологическую термодинамику необратимых процессов, опирающуюся на использование полученных из опыта соотношений между параметрами, описывающими термодинамические процессы.
Ключевое значение в термодинамике необратимых процессов имеет величина, численно равная скорости увеличения энтропии в единице объема:
. | (4.85) |
Эта величина представляет собой производство энтропии для единичного объема адиабатически изолированной системы. Она описывает количество энтропии, которая возникает в единичном объеме термодинамической системы за единицу времени при протекании в ней необратимых термодинамических процессов.
Если в качестве термодинамических параметров системы выступают величин, то формулу(4.85) можно представить в виде:
. | (4.86) |
Величины называютсятермодинамическими силами, а величины -плотностями термодинамических потоков. Следовательно, производство энтропии можно рассчитывать по формуле:
. | (4.87) |
В случае небольших отклонений от равновесного состояния между термодинамическими потоками и термодинамическими силамиможет быть установлена линейная зависимость
. | (4.88) |
Это соответствует наиболее простому случаю термодинамики линейных необратимых процессов.
Таким образом, для линейных необратимых процессов производство энтропии определяется выражением
(4.89) |
или
. | (4.90) |
Коэффициенты называются кинетическими коэффициентами, и они характеризуют интенсивность явлений переноса. В 1931 году американский физик и химик Ларс Онсагер (1903 - 1976) установил, что для кинетических коэффициентов выполняется условие:
, | (4.91) |
указывающее на симметрию матрицы кинетических коэффициентов. Выражение (4.91) называется соотношением взаимности Онсагера.
Одним из принципов термодинамики линейных необратимых процессов является предложенный в 1947 году бельгийским физико-химиком Ильей Романовичем Пригожиным (р. 1917) принцип минимума производства энтропии:
Стационарные необратимые процессы протекают таким образом, чтобы производство энтропии было минимальным.
Принцип минимума производства энтропии позволяет установить критерий отбора реализующихся в природе необратимых процессов от реально не наблюдающихся, и, таким образом, выбрать из возможных процессов реально существующие.
Необходимость выполнения указанного принципа приводит к тому, что при протекании в среде необратимых стационарных процессов возникают динамические структуры, названные Пригожиным диссипативными структурами, что уменьшает производство энтропии. Примером таких структур могут служить ячейки Бенара - регулярные динамические структуры, возникающие в тонком слое нагреваемой снизу жидкости, и колебательные химические реакции Б.П. Белоусова, при которых происходят периодические изменения концентрации реагирующих веществ.
- Глава 1. Первое начало термодинамики
- 1.1. Термодинамические состояния и термодинамические процессы
- 1.2. Внутренняя энергия и температура термодинамической системы
- 1.3. Методы измерения температуры
- 1.4. Адиабатически изолированная система
- 1.5. Первое начало термодинамики
- Глава 2. Уравнения состояния термодинамических систем.
- 2.1. Уравнение состояния идеального газа
- .2. Основные положения молекулярно-кинетической теории
- 2.3. Экспериментальные подтверждения молекулярно-кинетической теории
- 2.4. Теплоёмкость идеального газа
- 2.5. Адиабатический процесс
- 2.6. Политропический процесс
- 2.7. Газ Ван-дер-Ваальса
- Глава 3. Второе и третье начала термодинамики.
- 3.1. Тепловые машины
- 3.2. Цикл Карно
- 3.3. Расчет цикла Карно для реального газа
- 3.4. Второе начало термодинамики
- 3.5. Теорема Карно
- 3.6. Термодинамическая шкала температур
- 3.7. Неравенство Клаузиуса
- 3.8. Термодинамическая энтропия
- 3.9. Закон возрастания энтропии
- 3.10. Третье начало термодинамики
- Глава 4. Описание термодинамических процессов.
- 4.1. Основное неравенство и основное уравнение термодинамики
- 4.2. Термодинамические потенциалы
- 4.3. Применение термодинамических потенциалов для описания эффекта Джоуля-Томсона
- 4.4. Принцип Ле-Шателье - Брауна
- 4.5. Введение в термодинамику необратимых процессов
- Глава 5. Статистическое описание равновесных состояний.
- 5.1. Функция распределения
- 5.2. Распределение Больцмана
- 5.3. Принцип детального равновесия
- 5.4. Распределение Максвелла
- 5.5. Экспериментальная проверка распределения Максвелла
- 5.6. Распределение Максвелла-Больцмана
- 5.7. Каноническое распределение Гиббса
- 5.8. Равновесные флуктуации
- 5.9. Статистическое обоснование второго начала термодинамики
- Глава 6. Явление переноса.
- 6.1. Термодинамические потоки
- 6.2. Описание явлений переноса в газах
- 6.3. Эффузия в разреженном газе
- 6.4. Броуновское движение
- 6.5. Производство энтропии в необратимых процессах
- Глава 7. Равновесие фаз и фазовые превращения.
- 7.1. Агрегатные состояния вещества
- 7.2. Условия равновесия фаз
- 7.3. Явления на границе раздела газа, жидкости и твердого тела
- 7.4. Фазовые переходы первого рода
- 7.5. Диаграммы состояния
- 7.6. Фазовые переходы второго рада
- 7.7. Критические явления при фазовых переходах