logo
Меduku-нове

Орієнтовний перелік питань до підсумкового контролю знань з дисципліни.

Змістовий модуль 1. Термодинамічні та кінетичні закономірності перебігу процесів та електрохімічні явища в біологічних системах.

1. Макроергічні сполуки. АТФ як універсальне джерело енергії для біохімічних реакцій. Характеристика макроергічних зв’язків.

2. Перший закон термодинаміки. Внутрішня енергія. Ентальпія. Теплота ізобарного та ізохорного процесів. Стандартні теплоти утворення та згоряння речовин.

3. Термохімія. Закон Гесса. Термохімічні перетворення.

4. Термохімічні розрахунки та їх використання для енергетичної характеристики біохімічних процесів.

5. Другий закон термодинаміки. Ентропія. Енергія Гіббса.

6. Хімічна рівновага. Термодинамічні умови рівноваги. Прогнозу- вання направлення самодовільних процесів. Екзергонічні та ендергенічні процеси, які відбуваються в організмі.

7. Закон діючих мас. Константа хімічної рівноваги. Способи її вираження. Принцип Ле-Шательє. Прогнозування зміщення хімічної рівноваги.

8. Швидкість хімічних реакцій. Закон діючих мас для швидкості хімічних реакцій. Константа швидкості реакції.

9. Реакції прості та складні (послідовні, паралельні, супряжені, оборотні, ланцюгові). Фотохімічні реакції та їх роль в життєдіяльності.

10. Порядок реакції. Реакції 1-го та ІІ-го порядку. Реакції нульового порядку. Період напівперетворення.

11. Залежність швидкості реакції від температури. Температурний коефіцієнт. Правило Вант-Гоффа. Особливості температурного коефіці- єнту швидкості реакції для біохімічних процесів.

12. Рівняння Арреніуса. Енергія активації. Поняття про теорію активних зіткнень та про теорію перехідного стану.

1З. Гомогенний та гетерогенний каталіз. Особливості дії каталізатору. Механізм каталізу та його роль в процесах метаболізму.

14. Ферменти як каталізатори біохімічних реакцій. Залежність ферментативної дії від концентрації ферменту та субстрату, температури та реакції середовища.

15. Електродні потенціали та механізм їх виникнення. Рівняння Нернста. Нормальний (стандартний) електродний потенціал.

16. Нормальний водневий електрод.

17. Вимірювання електродних потенціалів. Електроди визначення. Електроди порівняння.

18. Окисно-відновні електродні потенціали. Механізм їх виникнення, біологічне значення. Рівняння Петерса.

19. Окисно-відновні реакції в організмі. Прогнозування їх направ- лення за стандартними значеннями енергії Гіббса та за величинами окисно-відновних потенціалів.

20. Окисно-відновне титрування (оксидиметрія). Метод перманга- натометрії.

21. Метод йодометрії.

22. Потенціометричне титрування, його використання в медико-біологічних дослідженнях.

23. Дифузійні та мембранні потенціали, їх роль у генезі біологічних потенціалів. Йонселективні електроди, їх використання для вимірювання концентрації іонів Н+ (скляний електрод), К+, Na+ ,Са2+ в біологічних розчинах.

Змістовий модуль 2. Кислотно-основні рівноваги в біологічних рідинах.

1. Розчини в життєдіяльності. Ентальпійний та ентропійний фактори розчинення та їх зв’язок з механізмом розчинення.

2. Розчинність газів у рідинах та її залежність від різних факторів. Закон Генрі–Дальтона. Вплив електролітів на розчинність газів. Роз- чинність газів у крові.

3. Розчинність твердих речовин та рідин. Розподіл речовин між двома рідинами, що не змішуються. Закон розподілу Нернста, його значення у явищі проникності біологічних мембран.

4. Рівновага у розчинах електролітів. Закон розведення Оствальда.

5. Дисоціація води. Йонний добуток води. pH біологічних рідин.

6. Добуток розчинності. Умови утворення та розчинення осадів.

7. Типи протолітичних реакцій. Реакції нейтралізації, гідролізу та йонізації.

8. Гідроліз солей. Ступінь гідролізу, залежність його від концентрації та температури. Константа гідролізу.

9. Основи титриметричного аналізу. Методи кислотно-основного титрування. Кислотно-основні індикатори та принципи їх підбору.

10. Буферні системи та їх класифікація, рН буферних розчинів.

11. Механізм дії буферних систем.

12. Буферна ємність та фактори, від яких вона залежить. Буферні системи крові.

13. Колігативні властивості розбавлених розчинів: зниження темпера- тури замерзання, підвищення температури кипіння. Закони Рауля. Кріомет-рія та ебуліометрія.

14. Колігативна властивість розбавлених розчинів – осмос. Осмотич-ний тиск. Закон Вант-Гоффа. Плазмоліз та гемоліз.

15. Колігативні властивості розбавлених розчинів електролітів. Ізотонічний коефіцієнт. Гіпо-, гіпер- та ізотонічні розчини в медичній практиці. Роль осмосу в біологічних системах.

Змістовий модуль 3. Фізико-хімія поверхневих явищ. Ліофобні та ліофільні дисперсні системи.

1. Особливості розчинів ВМС. Механізм набухання та розчинення ВМС. Залежність набухання та розчинення ВМС від різних факторів. Роль набухання у фізіології організмів.

2. Ізоелектрична точка білку та методи її визначення.

3. Драглювання розчинів ВМС. Властивості драглів.

4. Аномальна в’язкість розчинів ВМС. В’язкість крові та інших біологічних рідин. Осмотичний тиск розчинів біополімерів. Рівняння Галлера. Онкотичний тиск плазми та сироватки крові.

5. Мембранна рівновага Доннана.

6. Поверхнева активність. Правило Дюкло–Траубе. Рівняння Гіббса. Орієнтація молекул в поверхневому шарі та структура біологічних мембран.

7. Рівняння Ленгмюра.

8. Адсорбція із розчинів на поверхні твердого тіла. Рівняння Фрейндліха.

9. Фізико-хімічні основи адсорбційної терапії.

10. Адсорбція електролітів (вибірна та йонообмінна). Правило Панета–Фаянса.

11. Йоніти та їх використання в медицині.

12. Класифікація хроматографічних методів дослідження за ознаками механізму розподілу речовин, агрегатного стану фаз та техніки виконання. Використання хроматографії у медико-біологічних дослідженнях.

13. Дисперсні системи та їх класифікація. Способи одержання та очищення колоїдних розчинів. Діаліз, електродіаліз, ультрафільтрація. “Штучна нирка”.

14. Молекулярно-кінетичні властивості колоїдних систем (броунів- ський рух, дифузія, осмотичний тиск). Оптичні властивості колоїдних систем. Ультрамікроскопія.

15. Будова колоїдних частинок.

16. Електрокінетичний потенціал колоїдних часточок. Електрофорез, його використання в медицині та медико-біологічних дослідженнях. Рівняння Гельмгольца–Смолуховського.

17. Кінетична та агрегативна стійкість ліозолей. Фактори стійкості. Механізм коагулюючої дії електролітів.

18. Поріг коагуляції, його визначення. Правило Шульце–Гарді. Процеси коагуляції при очистці питної води та стічних вод. Колоїдний захист, його біологічна роль.

19. Грубодисперсні системи (аерозолі, суспензії, емульсії). Одержання та властивості. Медичне застосування. Напівколоїди.

Змістовий модуль 4. Хімія біогенних елементів. Комплексоутворення в біологічних рідинах

1. Електронна структура біогенних елементів. Типові хімічні влас-тивості елементів та їх сполук (реакції без зміни ступеня окиснення, зі змі- ною ступеня окиснення, комплексоутворення). Зв’язок між місцезнаход-женням s-, p-, d-елементів в періодичній системі та їх вмістом в організмі.

2. Розчини комплексних сполук. Сучасні уявлення про будову комплексних сполук. Класифікація комплексних сполук (за природою лігандів та зарядом внутрішньої сфери).

3. Константи нестійкості та стійкості комплексних йонів. Основи комплексонометрії.

4. Внутрішньокомплексні сполуки. Поліядерні комплекси. Комплексні сполуки в біологічних системах. Уявлення про будову гемоглобіну.

Орієнтовний перелік завдань для підсумкового контролю знань

1. В організмі людини відбуваються аеробний та анаеробний процеси окислення глюкози:

C6H12O6(т) = 2C2H5OH(р) + 2СО2(г)

C6H12O6(т) + 602(г) = 6СО2(г) + 6Н2О(р)

В якій із реакцій утворюється більше теплоти?

C6H12O6(т)

2C2H5OH(р)

СО2(г)

Н2О(р)

О2(г)

∆Нугв(кДж/моль)

– 1274,0

– 277,0

– 393,5

– 286,0

2. Які реакції в біохімії називають екзергонічними (катаболічними) та ендергонічними (анаболічними), враховуючи характер зміни вільної енергії (ΔG) при їх ізобарно-ізотермічному протіканні?

3. Уротропін (гексаметилентетрамін) одержують в рівноважній реакції: запишіть 6CH2O(г) + 4NH3(г) = (CH2)6N4(t) + 6H2O(р). Запишіть константу рівноваги. Як можна збільшити вихід лікарської речовини?

4. Чи можна розрахувати осмотичний тиск розчину за даними кріоскопії та ебуліоскопії? Наведіть схему розрахунків.

5. Як можна розрахувати молярну масу речовини за даними кріоскопії? Який з розчинників треба використати для найбільш точного визначення молярної маси: з вищим значенням кріоскопічної сталої чи з меншим?

6. Буферні системи кислотного типу. Механізм їх дії. Формула для розрахунку рН. З наведених сполук знайдіть компоненти буферних систем основного та кислотного типу: NH3∙H2O, NaHCO3, Na2HPO4, H2CO3, NH4Cl, (C2H5)2NH, NaH2PO4, CН3COOH, CH3COOK, (C2H5) NH, HCl, C6H5COOH, C6H5COOK.

7. рН шлункового соку дорівнює 2. Розрахувати с(H+), с(OH), а також рН його при розведенні в 10 та 100 разів.

8. При розчиненні 0,6 г біологічно-активної речовини неелектроліту в 25 г води температура кипіння розчину підвищилась на 0,204 K. При розчиненні 0,3 г цієї ж речовини в 20 г бензолу температура кипіння підвищилась на 0,668 K. Визначте ебуліоскопічну сталу для бензолу, якщо для води вона дорівнює 0,512 кгК/моль.

9. Що таке порядок реакції? Що таке молекулярність реакції? Наведіть приклади моно-, бі- та тримолекулярних реакцій. В яких випадках молекулярність і порядок реакції співпадають?

10. Чому швидкість реакцій при підвищенні температури різко зростає? Що таке “активні молекули”? Сформулюйте основні положення теорії активних співударів. Що таке енергія активації? Від чого вона залежить? Який вигляд має енергетичний профіль реакції (зміна потенціальної енергії реагуючої системи в ході реакції) для: а) екзотермічної реакції; б) ендотермічної реакції?

11. Дві хімічні реакції однакового порядку мають, відповідно, температурні коефіцієнти швидкості реакції: γ=2, γ=4. Для якої з реакцій енергія активації буде більшою? Відповідь мотивувати.

12. Обчислити енергію активації реакції, якщо відомо, що при підвищенні температури від 240 до 260 К її швидкість зросла у 5 разів?

13. Як зміняться рівноважні потенціали електродів Cu|CuSO4 і Pt|FeSO4,Fe2(SO4)3 при додаванні до електролітів води?

14. Скільки електронів бере участь у окісно-відновній реакції, якщо Ео/в=0,169 В, Е0о/в=0,110 В і в системі окисленої форми у 10 разів більше, ніж відновленої?

15. Стандартний електродний потенціал цинку при 298 К дорівнює – 0,76 В. При якій молярній концентрації іонів Zn2+ потенціал цинкового електроду дорівнюватиме нулю?

16. Обчислити потенціал цинкового електроду, зануреного у 200 мл розчину, що містить 0,2 г ZnSO4, при температурі 298 К.

17. Для якої з амінокислот (цистеїн чи тирозин) швидкість пересування на папері в суміші вода–фенол буде більшою, якщо відомо, що Rf для цих кислот дорівнює, відповідно, 0,19 та 0,52? Відповідь мотивувати.

18. Навести схему очищення води від іонів SO42– та HCO3 на аніоніті в OH-формі.

19. Яка з амінокислот – лейцин чи аланін – мають більшу гідрофільність, якщо методом паперової хроматографії встановлено, що Rf для цих кислот при використанні фенолу як рухомої фази, води, як нерухомої фази, а паперу як інертного носія дорівнює, відповідно, 0,79 і 0,55? Відповідь мотивувати.

20. Обчислити масу лікарського препарату глюконату кальцію, що міститься у водному розчині, якщо відомо, що на титрування фільтрату, що утворився при пропусканні розчину через катіоніт у Н+-формі, витратилось 15 мл розчину з молярною концентрацією 0,1 моль/л. Відносна молекулярна маса глюконату кальцію становить 430.

21. Гідрозоль AgI одержаний шляхом змішування рівних об’ємів розчину KI з молярною концентрацією c(KI) = 0,005 моль/л та розчину AgNO3 з молярною концентрацією c(AgNO3) = 0,01 моль/л. Який з двох електролітів: MgSO4 або К3[Fe(CN)6] буде мати більший поріг коагуляції по відношенню до даного гідрозолю? Відповідь обґрунтуйте.

22. Що таке взаємна коагуляція? На конкретному прикладі поясніть механізм такої коагуляції. Які з золів: гідроксиду заліза (ІІІ), йодиду срібла, одержаного в надлишку йодиду калію та одержаного в надлишку нітрату срібла, необхідно змішати, щоб відбулася взаємна коагуляція? Яке явище називається колоїдним захистом? В чому полягає його значення в біології та фармації? Наведіть приклади. Яка роль колоїдного захисту в живому організмі?

23. Що таке поріг коагуляції та коагуляційна здатність електроліту? В яких одиницях виражають ці величини? Від чого залежить коагуляційна здатність електроліту? Сформулюйте правило Шульце–Гарді. Які з електролітів: NaCl, CaCl2, K2SO4, AlCl3, K4[Fe(CN)6] треба взяти для коагуляції золю Fe(OH)3, щоб експериментально підтвердити правило Шульце–Гарді?

24. Намалюйте схему будови та позначте частини міцели золю йодиду срібла, що одержаний додаванням 40 мл розчину нітрату срібла з молярною концентрацією с(AgNO3)=0,02 моль/л до 50 мл розчину йодиду калію з молярною концентрацією с(КІ)=0,001 моль/л. Яким методом одержан цей золь? Визначте знак заряду часточок цього золю. До якого електроду вони будуть рухатись?

25. Визначте знак заряду частинок золю, якщо при його коагуляції електролітами одержані такі величини порогів коагуляції (в ммоль/л):

ск(NaCl) = 300; ск(1/2MgCl2) = 320; ск(1/3Na3PO4) = 0,6; ск(1/2Na2SO4) = 20. Відповідь обґрунтуйте.

26. Ізоелектрична точка міозину м’язів дорівнює 5. При яких значеннях рН: 2; 4; 5; або 7,0 – електрофоретична рухливість буде найбільшою? З чим це пов’язане?

27. При яких значеннях рН можна розділити методом електрофорезу два ферменти А та В з ізоелектричними точками 5 та 8? Які знаки заряду ферментів А та В при рН: 4; 5; 6; 7; 8; 9?

28. До якого електроду буде рухатися білок при рН 7,40, якщо його ізоелектрична точка дорівнює 6,0? Відповідь поясніть.

29. Ізоелектрична точка казеїну дорівнює 4,50. Який знак мають макроіони казеїну при рН 3,0 та 6,0?