20. Дифракція світла. Дифракційна решітка та її застосування
Дифракція світла - явище огинання перешкод світловими хвилями, які поширюються в неоднорідному середовищі. Дифракція спостерігається під час проходження світла через малі отвори чи огинання світлом перешкод, розміри яких малі (співмірні) порівняно з довжиною хвилі.
Явище відхилення світла від прямолінійного поширення називається дифракцією світла. Оскільки довжина світлової хвилі є дуже малою, то і розміри перешкод чи щілини мають бути малими. Наприклад, під час проходження монохроматичного світла через круглий отвір, розмір якого сумірний з довжиною падаючих світлових хвиль, на екрані навколо центральної світлової плями спостерігаються темні і світлі кільця, що чергуються (рис. 6.39).
Якщо таке саме світло проходить через вузьку щілину, то матимемо маку картину, зображену на рис. 6.40. Поява світлих і темних кілець, що чергуються, в ділянці геометричної тіні французький фізик Френель пояснив інтерференцією світлових хвиль, які надходять у результаті дифракції із різних точок отвору в одну точку на екрані.
Особливо чітку дифракційну картину утворюють дифракційні грати. Дифракційні граки - це сукупність дуже вузьких щілин, розділених непрозорими проміжками (рис. 6.41).
Якщо a - ширина прозорої частини, а b - непрозорої, то:
,
де l - ширина грат; N - кількість щілин.
Спрямуємо на грати паралельний пучок променів. Кожна точка щілини буде відхиляти промені у всіх напрямах, зокрема, і під кутом φ від початкового напряму. Якщо ці промені зібрати на екрані, наприклад, за допомогою збиральної лінзи, то можна отримати підсилення чи послаблення світла - дифракційний максимум чи мінімум освітленості.
Із заштрихованого трикутника отримаємо різницю ходу:
Δd = d·sinφ.
Якщо в цю різницю ходу вкладеться ціла кількість довжин хвиль, то на екрані спостерігатиметься дифракційний максимум, а якщо непарна кількість півхвиль, - мінімум.
Таким чином, Δd = kλ, а також Δd = d·sinφ, то для умови максимуму дифракційної гратки, отримаємо:
d·sinφ = kλ (1)
де k = 1, 2, 3, …, n (ціле число),λ- довжина падаючої світлової хвилі.
Внаслідок дифракції на дифракційних гратах білого світла всі головні максимуми, крім центрального нульового максимуму, будуть забарвленими. Зі збільшенням довжини хвилі головні максимуми всередині розміщуються під великим кутами від центрального. Райдужна полоска, що містить сім кольорів - від фіолетового до червоного (підрахунок ведеться від центрального максимуму), називають дифракційним спектром.
Якщо відомо період грат d, і виміряно кут φ, під яким спостерігається максимум і порядок спектра k, тоді можна визначити довжину світлової хвилі:
.
Вона дорівнює: λч 8·10-7 м; λф 4·10-7 м.
Інші кольори мають проміжні значення.
Промисловість виготовляє дифракційні грати, які містять 50 штрихів/мм, 100 штрихів/мм, 600 штрихів/мм, 1200 штрихів/мм і дзеркальні грати з 6000 штрихів/мм.
- 1. Тиск газів. Закон Паскаля. Атмосферний тиск
- 2. Послідовне та паралельне з’єднання провідників в електричному колі.
- 3. Рівноприскорений рух. Вільне падіння .
- 4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- 5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- 6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- 7. Рівномірний рух тіла по колу
- 8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- 9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- 10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- 11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- 12. Закони відбивання та заломлення світла.
- 13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- 14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- 15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- 16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- 17. Рух тіла під дією кількох сил. Момент сили. .
- 18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- 19. Фотоелементи та їх застосування в техніці.
- 20. Дифракція світла. Дифракційна решітка та її застосування
- 21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- 22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- 23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- 24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- 25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- 26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- 27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- 28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- 29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- 30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- 31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- 32. З'єднання конденсаторів у батарею.
- 33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- 34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- 35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- 36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- 37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- 38. Деформації. Види деформацій. Сила пружності. Закон Гука
- 39. Електричний струм. Закон Ома для ділянки кола. Опір.
- 40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- 41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- 42. Природа світла
- 43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- 44. Побудова зображення за допомогою лінзи.
- 45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- Блок-схема радіолокаційної станції.
- 46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- 47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- 48. Ідеальний газ. Рівняння стану ідеального газу.
- 49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- 50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- 51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- 52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.