30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
Відкриття складної будови атома - найважливіший етап становлення сучасної фізики, який позначився на ньому її наступному розвитку. У процесі створення теорії будови атома, яка пояснила атомні спектри, відкрито нові закони руху мікрочастинок - закони квантової механіки.
Не відразу вчені дійшли правильного розуміння будови атома. Після перших експериментів можна було робити висновки про складну будову атома і наявність в його структурі електричних зарядів. Ці результати отримано М. Фарадеєм 1833 року під час вивчення законів електролізу. 1897 року Дж. Томсон у результаті експериментів з вивчення електричного розряду в розріджених газах явища фотоефекту відкрив електрон. Він виміряв важливу характеристику цієї частинки - питомий заряд - e/m = 1,76·10-11 Кл/кг. Американський фізик Міллікен 1909 року дуже точно виміряв заряд електрона. Він виявився однаковим у всіх електронів і дорівнює:
e = – 1,6·10-19 Кл.
М аса електрона є приблизно в 2000 разів меншою за масу одного з найлегших атомів - атома водню - і дорівнює me = 9,1·10-31 кг. Виходячи з цих даних, Томсон запропонував модель атома, згідно якою атом є зарядженою кулею радіусом R 10-8 см, всередині якої знаходяться електрони. Більш складні атоми в додатно зарядженій кулі мають декілька електронів. Таким чином, атом подібний пиріжка, роль родзинок при цьому відіграють електрони.
Однак модель атома Томсона виявилась повністю відмінною від моделі, яку запропонував Резерфорд у результаті своїх досліджень. Резерфорд 1906 року запропонував модель, згідно з якою будова атома дуже схожа на будову сонячної системи. Щоб перевірити правильність своєї теорії, він провів низку дослідів, які називають дослідами Резерфорда. Він зондував атоми золота швидкорухомими ядрами гелію ( частинками).
Навпроти отвору в свинцевому контейнері на екрані, покритому ZnSO4, можна було помітити світлову пляму. Резерфорд помістив на шляху рухомих ядер тонку золоту пластинку (фольгу), і помітив, що незначна частина ядер відхиляється на значні кути і дуже мало ядер відбивались назад. Узагальнивши результати дослідів, Резерфорд зробив висновки:
- в цілому атом порожній. Майже вся його маса сконцентрована в ядрі діаметром d ~ 10-15 м.
- ядро несе в собі заряд q+, величина якого за модулем дорівнює заряду електрона, помноженому на порядковий номер цього елемента в таблиці Менделєєва.
- оскільки атом електрично нейтральний, то позитивний заряд ядра компенсує заряд електронів, які мають рухатись навколо ядра, подібно до планет навколо Сонця. Кількість електронів дорівнює порядковому номеру елемента в таблиці Менделєєва. Таку модель атома Резерфорд назвав планетарною моделлю атома.
Планетарна модель атома багато пояснила в будові атома, але одразу після її створення виникли труднощі: ядро заряджено позитивно, а електрони - негативно. Між ними існує кулонівська сила притягання. Для того, щоб електрони не впали на ядро, вони мусять рухатись навколо нього з доцентровим прискоренням. З теорії Максвелла випливає, що якщо заряд рухається з прискоренням, то при цьому має випромінюватись електромагнітна хвиля, а розрахунки показують, що за час t 10-8 c електрон, рухаючись по спіралі мусить припинити свій рух.
Дослідні ж дані показували, що за нормальних умов атом не випромінює енергію і існує як завгодно довго.
Вихід із ситуації 1913 року запропонував датський фізик Нільс Бор. Він створив теорію атома на основі таких постулатів:
1. Атомна система може перебувати тільки в особливих стаціонарних, або квантових станах, кожному з яких відповідає певна енергія En. У стаціонарному стані атом енергію не випромінює.
2. Перехід атома з одного стаціонарного стану в інший супроводжується випромінюванням чи поглинанням фотонів, енергію яких h визначають за формулою
hkn = Ek – En, (1)
де k і n - цілі числа (номери стаціонарних станів), якщо Ek > En фотон з частотою kn випромінюється, якщо Ek < En - поглинається.
3. Радіуси rn стаціонарних станів задовольняють умову:
. (2)
де n = 1, 2, 3, …, m - маса електрона, - зведена стала Планка.
Інколи частоту випромінювання можна записати таким чином:
. (3)
Поглинаючи світло, атом переходить із стаціонарного стану з меншою енергією в стаціонарний стан з більшою енергією. Усі стаціонарні стани, крім одного, є умовно стаціонарними. Нескінченно довго кожен атом може знаходитись лише в стаціонарному стані з мінімальним запасом енергії. Цей стан атома називається основним, всі інші - збудженими.
Постулати Бора дозволяють визначити частоти випромінювання атомів водню під час переходу між різними станами. Усі частоти випромінювань атома водню складають низку серій, кожна з яких утворюється під час переходу атома з одного енергетичного стану в інший (рис. 7.8).
Існують такі серії:
1. серія Лаймана, що відповідає переходу електрона на першу орбіту з другої, третьої і т. д.
2. серія Бальмера, коли електрони переходять на другу орбіту з третьої, четвертої і т.д.
3. серія Пашена, коли переходять електрони на третю орбіту або на третій рівень з четвертої, п'ятої і т. д.
Поглинання світла - процес зворотний випромінюванню. Атом, поглинаючи світло переходить із нижчих енергетичних станів до вищих. При цьому він поглинає випромінювання з такою самою чистотою, що й випромінює.
На основі постулатів Бора можна визначити частоти kn і nk атомів електромагнітних хвиль, що випромінюють:
де R = 3,27·1015 c-1 - стала Ридберга.
Найбільший успіх теорія Бора мала в застосуванні до атома водню, для якого вдалося побудувати кількісну теорію спектра. Проте побудувати кількісну теорію вже для наступного за воднем атома гелію за допомогою постулатів Бора не вдалося. Ця теорія була штучним поєднанням класичних законів фізики і квантових уявлень.
- 1. Тиск газів. Закон Паскаля. Атмосферний тиск
- 2. Послідовне та паралельне з’єднання провідників в електричному колі.
- 3. Рівноприскорений рух. Вільне падіння .
- 4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- 5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- 6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- 7. Рівномірний рух тіла по колу
- 8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- 9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- 10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- 11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- 12. Закони відбивання та заломлення світла.
- 13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- 14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- 15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- 16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- 17. Рух тіла під дією кількох сил. Момент сили. .
- 18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- 19. Фотоелементи та їх застосування в техніці.
- 20. Дифракція світла. Дифракційна решітка та її застосування
- 21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- 22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- 23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- 24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- 25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- 26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- 27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- 28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- 29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- 30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- 31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- 32. З'єднання конденсаторів у батарею.
- 33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- 34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- 35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- 36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- 37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- 38. Деформації. Види деформацій. Сила пружності. Закон Гука
- 39. Електричний струм. Закон Ома для ділянки кола. Опір.
- 40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- 41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- 42. Природа світла
- 43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- 44. Побудова зображення за допомогою лінзи.
- 45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- Блок-схема радіолокаційної станції.
- 46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- 47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- 48. Ідеальний газ. Рівняння стану ідеального газу.
- 49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- 50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- 51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- 52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.