33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
Взаємодія зарядів за законом Кулона є експериментально встановленим фактом. Однак математичний вираз закону взаємодії зарядів не розкриває фізичного змісту самого процесу взаємодії, не пояснює, яким чином відбувається дія заряду q1 на заряд q2.
Теорія близькодії, створена на основі дослідження англійського фізика М. Фарадея, пояснює взаємодію електричних зарядів тим, що навколо кожного електричного заряду існує електричне поле - особливий вид матерії, що існує незалежно від наших знань про нього і має енергію. Електричне поле неперервне в просторі і здатне діяти на інші електричні заряди.
Електричне поле нерухомих зарядів називають електростатичним. Воно не змінюється з часом. Це поле створюється тільки електричними зарядами. Воно існує в просторі, що оточує ці заряди, і нерозривно з ними пов'язане. Головна властивість електричного поля - здатність діяти на внесені в нього електричні заряди з деякою силою. Тому досліджують електричні поля за допомогою пробного точкового заряду. Пробний заряд q0 має бути малим, щоб він не спотворював помітно досліджуваного поля.
Нехай в точці О знаходиться позитивний точковий заряд q (рис.4.1.5). У довільну точку поля С, створеного зарядом q, і яка знаходиться на відстані r від цього заряду, помістимо пробний заряд q0. Модуль сили взаємодії між цими зарядами визначаємо за законом Кулона
Поділивши обидві частини формули (4.1.4) на q0 і прирівнявши q1 = q, отримуємо
. (4.1.5)
Вираз правої частини формули (4.1.5) не залежить від заряду q0 і має стале значення для кожної точки поля, в якій цей заряд знаходиться. Отже, відношення F/q0 є також сталим для кожної точки поля. Величину, що виражає це відношення, називають напруженістю електричного поля:
. (4.1.6)
Напруженістю електричного поля називають фізичну векторну величину , що є силовою характеристикою електричного поля в кожній його точці і чисельно дорівнює відношенню сили, з якою поле діє на точковий заряд, поміщений у цю точку, до значення цього заряду. Напрям напруженості збігається з напрямом електричної сили, що діє на пробний позитивний заряд в цій точці:
.
Вектор напруженості в будь-якій точці (А, В) електричного поля напрямлений вздовж прямої, що сполучає цю точку і заряд, від заряду, якщо q > 0, і до заряду, якщо q < 0 (рис. 4.1.6).
Із формул (4.1.5) і (4.1.6) знайдемо, що модуль напруженості електричного поля, створюваного точковим електричним зарядом,
. (4.1.7)
Одиницю напруженості електричного поля визначаємо із формули. У СІ:
.
Отже, за одиницю напруженості в СІ - вольт на метр - взято напруженість такого однорідного електричного поля, потенціал якого вздовж лінії напруженості змінюється на 1 В на відстані 1 м. У кожній точці такого поля на заряд, що дорівнює 1 Кл, діє сила 1 Н.
Повне уявлення про розподіл поля можна дістати з рисунка, на якому зобразити вектори напруженості, а також показати неперервні лінії, дотичні до яких в кожній точці, через яку вони проходять, збігаються з вектором напруженості. Ці лінії називаються силовими лініями або лініями напруженості (рис.4.1.7). Силові лінії можна зробити видимими, якщо довгасті кристалики діелектрика, наприклад, хініну (ліків від малярії) добре перемішати у в'язкій рідині (рициновій олії) і помістити туди заряджені тіла; поблизу цих тіл кристалики "вишикуються" в ланцюжки вздовж ліній напруженості.
Зобразимо поле різних тіл (рис. 4.1.8 - 4.1.11).
Силові лінії електричного поля точкових зарядів незамкнені. Вони починаються на позитивних електричних зарядах і закінчуються на негативних (рис. 4.1.8 - 4.1.11). Віддалік від країв пластин силові лінії паралельні: електричне поле однакове у всіх точках (рис. 4.1.11).
Електричне поле, напруженість якого однакова у всіх точках простору, називають однорідним.
Досліди показують, якщо на електричний заряд q діють одночасно електричні поля декількох зарядів, то результуюча сила дорівнює геометричній сумі сил, що діють з боку кожного поля окремо. Ця властивість електричних полів означає, що ці поля підлягають принципу суперпозиції: якщо в заданій точці простору різні заряджені частинки створюють електричні поля напруженістю , , і т.д., то результуюча напруженість поля в цій точці дорівнює геометричній сумі напруженостей полів частинок, тобто:
.
Завдяки принципу суперпозиції для знаходження напруженості поля системи заряджених частинок у будь-якій точці А досить знати вираз для напруженості поля точкового зарядженого тіла і додати вектори за правилом паралелограма (рис. 4.1.12):
Принцип суперпозиції (накладання) полів означає, що електричні поля під час накладання не впливають одне на одне.
Принцип суперпозиції дозволяє обчислити напруженість поля довільної системи зарядів, а не тільки точкових, зокрема і рівномірно зарядженої площини.
За рівномірного розподілу електричного заряду q по поверхні площею S поверхнева густина заряду s є сталою і дорівнює:
.
У фізиці доведено, що напруженість електричного поля нескінченої площини з поверхневою густиною заряду s однакова в довільній точці простору і дорівнює:
, (4.1.8)
де e0 - електрична стала.
Формулу застосовують для розрахунку напруженості електричного поля біля заряджених тіл у тому разі, коли форма рівномірно зарядженої поверхні близька до площини і відстань від точки, в якій визначається напруженість поля, до поверхні тіла значно менша від розмірів тіла і відстані до краю зарядженої поверхні.
З рис. 4.1.11 видно, що напруженості полів, створених обома площинами, напрямлені в один бік. Отже, геометрична сума (згідно з принципом суперпозиції полів) є їх арифметичною сумою:
Поза площинами пластин їх напруженості напрямлені протилежно. Тому результуюча напруженість поля поза площинами дорівнює нулю і електричного поля в цих частинах простору немає.
- 1. Тиск газів. Закон Паскаля. Атмосферний тиск
- 2. Послідовне та паралельне з’єднання провідників в електричному колі.
- 3. Рівноприскорений рух. Вільне падіння .
- 4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- 5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- 6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- 7. Рівномірний рух тіла по колу
- 8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- 9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- 10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- 11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- 12. Закони відбивання та заломлення світла.
- 13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- 14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- 15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- 16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- 17. Рух тіла під дією кількох сил. Момент сили. .
- 18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- 19. Фотоелементи та їх застосування в техніці.
- 20. Дифракція світла. Дифракційна решітка та її застосування
- 21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- 22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- 23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- 24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- 25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- 26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- 27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- 28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- 29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- 30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- 31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- 32. З'єднання конденсаторів у батарею.
- 33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- 34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- 35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- 36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- 37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- 38. Деформації. Види деформацій. Сила пружності. Закон Гука
- 39. Електричний струм. Закон Ома для ділянки кола. Опір.
- 40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- 41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- 42. Природа світла
- 43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- 44. Побудова зображення за допомогою лінзи.
- 45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- Блок-схема радіолокаційної станції.
- 46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- 47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- 48. Ідеальний газ. Рівняння стану ідеального газу.
- 49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- 50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- 51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- 52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.