29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
Гази в природному стані — діелектрики, оскільки вони складаються з електрично нейтральних атомів або молекул. Газ може бути провідником при значному підвищенні температури, або внаслідок дії на нього ультрафіолетового, рентгенівського або гамма-випромінювань. Все це — зовнішні іонізатори, які перетворюють частину молекул газу на позитивні іони, відщеплюючи від молекул електрони. Електричний струм у газі називають газовим розрядом. Залежність струму в газі від напруги між введеними в посудину з газом електродами називають вольтамперною характеристикою газового розряду (ВАХ). Ділянка ОА відповідає все більш повному відведенню до електродів заряджених частинок, що утворились зовнішньою дією. Ділянка АВ відповідає струму насичення: всі утворювані за одиницю часу електрони та іони відразу відводяться до електродів. Ділянка ВС відображує приєднання до зовнішнього іонізатора внутрішнього: прискорююча напруга настільки велика, що одержаної електронами енергії достатньо для ударної іонізації ними молекул газу; відбувається стрімке збільшення числа електронів та іонів. Таким чином, на ділянці ВС відбувається іонізація молекул не тільки зовнішнім впливом, але і самостійна іонізація. При U, меншою за Uс іони не беруть участі в ударній іонізації, бо їх малий пробіг не дозволяє їм накопичити необхідну для іонізації енергію. Хоча сили струмів в інтервалі між Іа,b і Іс великі, усунення зовнішнього іонізатора призводить до зникнення розряду; отже, він був несамостійним (незважаючи на наявність самостійної іонізації). Несамостійним називається розряд, який відбувається тільки в присутності зовнішнього іонізатора. Розряд стає самостійним при подальшому посиленні електричного поля, прискорюючого електрони та іони. У досить сильних полях позитивні іони: а) вибивають електрони з катода; б) іонізують молекули газу при зіткненні з ними. Виникнення самостійного розряду призводить до спаду напруги між електродами в газі (через істотне зменшення опору газового проміжку), ділянка СD. У залежності від тиску газу, форми електродів та прикладеної напруги можуть виникати самостійні розряди різних типів: тліючий, дуговий, коронний, іскровий. Значно іонізований газ називається плазмою. Розрізняють газорозрядну плазму (про неї уже говорилось) і високотемпературну плазму, дуже поширену у Всесвіті (зірки, туманності, міжзоряний газ). Вона утворюється внаслідок співударяння нейтральних атомів або молекул газу, які мають достатньо великі швидкості (тобто в газі при дуже високих температурах). Приклади використання плазми: індикаторні лампи, світлові реклами, електрозварювання, очистка газоподібних відходів виробництво від твердих включень. Інтерес до високотемпературної плазми спочатку був тільки теоретичним, як до об'єкта далекого космічного оточення Землі, однак у зв'язку з проблемою здійснення керованих термоядерних реакцій це питання набуває практичного характеру.
- 1. Тиск газів. Закон Паскаля. Атмосферний тиск
- 2. Послідовне та паралельне з’єднання провідників в електричному колі.
- 3. Рівноприскорений рух. Вільне падіння .
- 4. Взаємодія струмів. Магнітне поле струму. Магнітна індукція. Сила Ампера. Сила Лоренца.
- 5. Механічний рух. Відносність руху. Система відліку. Шлях і переміщення. Додавання швидкостей.
- 6. Випаровування рідин. Насичуюча і ненасичуюча пара. Тиск насичуючої пари. Вологість повітря, її вимірювання
- 7. Рівномірний рух тіла по колу
- 8. Електромагнітні хвилі, їх випромінювання. Принципи сучасного радіозв’язку. Розвиток засобів зв’язку в Україні.
- 9. Гравітаційна взаємодія. Закон всесвітнього тяжіння. Деформація тіл. Закон Гука. Сила тертя.
- 10. Корпускулярно-хвильовий дуалізм. Тиск світла. Дослід Лебедєва. Хімічна дія світла.
- 11. Перший закон динаміки Ньютона. Інерціальні системи відліку. Принцип відносності у класичній механіці.
- 12. Закони відбивання та заломлення світла.
- 13. Маса, її вимірювання. Сила. Другий закон динаміки Ньютона.
- 14. Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма-випромінювання.
- 15. Третій закон Ньютона. Імпульс тіла. Закон збереження імпульсу. Значення робіт к. Ціолковського, ю. Кондратюка, с.Корольова у розвитку космонавтики.
- 16. Самоіндукція. Індуктивність. Енергія магнітного поля.
- 17. Рух тіла під дією кількох сил. Момент сили. .
- 18.Неперервний та лінійчатий спектри. Спектри поглинання та випромінювання. Спектральний аналіз та його застосування.
- 19. Фотоелементи та їх застосування в техніці.
- 20. Дифракція світла. Дифракційна решітка та її застосування
- 21. Склад атомного ядра. Відкриття нейтрона. Ізотопи
- 22. Генератор змінного струму. Трансформатор. Передавання енергії на відстань.
- 23. Основні положення молекулярно-кінетичної теорії. Пояснення агрегатних станів речовини на основі мкт. Маса і розмір молекул. Стала Авогадро.
- Будь-які речовини мають дискретну (переривчасту) будову. Вони складаються з найдрібніших частинок молекул і атомів.
- Молекули знаходяться в стані неперервного хаотичного (невпорядкованого) руху, що називається тепловим.
- 24. Лінзи. Формула тонкої Лінзи. Лінійне збільшення
- 25. Внутрішня енергія, способи її зміни. Кількість теплоти та робота. Перший закон термодинаміки
- 26. Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі
- 27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.
- 28. Поділ ядер урану. Ланцюгова реакція. Ядерний реактор. Термоядерні реакції
- 29. Несамостійний і самостійний розряди у газах. Плазма, її використання.
- 30. Дослід Резерфорда. Ядерна модель атома. Квантові постулати Бора.
- 31. Електризація тіл. Електричний заряд, його дискретність. Закон збереження електричного заряду. Закон Кулона.
- 32. З'єднання конденсаторів у батарею.
- 33. . Електричне поле. Напруженість електричного поля. Лінії напруженості
- 34 Фотоелектричний ефект. Закони фотоефекту, їх пояснення на основі квантових уявлень. Рівняння Ейнштейна.
- 35. Робота при переміщенні заряджених тіл в електричному полі. Потенціал. Різниця потенціалів. Напруга.
- 36. Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання
- 37. Електроємність. Конденсатор. Енергія електричного поля конденсатора (без виведення). Застосування конденсаторів у техніці.
- 38. Деформації. Види деформацій. Сила пружності. Закон Гука
- 39. Електричний струм. Закон Ома для ділянки кола. Опір.
- 40. Кристалічні та аморфні тіла. Поняття про рідкі кристали
- 41. Електрорушійна сила. Закон Ома для повного кола. Робота і потужність електричного струму.
- 42. Природа світла
- 43. Явище електромагнітної індукції. Закон електромагнітної індукції. Правило Ленца.
- 44. Побудова зображення за допомогою лінзи.
- 45. Електромагнітне поле, його матеріальність. Електромагнітні хвилі, їх властивості. Радіолокація, її застосування.
- Блок-схема радіолокаційної станції.
- 46 Поверхневий натяг. Капілярні явища. Явища змочування і капілярності у природі і техніці.
- 47. Електричний струм у вакуумі. Електронна емісія. Електронно-променева трубка.
- 48. Ідеальний газ. Рівняння стану ідеального газу.
- 49. Електричний струм в електролітах. Закони електролізу. Застосування електролізу.
- 50. Шкала електромагнітних хвиль. Застосування інфрачервоного, ультрафіолетового та рентгенівського випромінювань.
- 51. Електричний струм у напівпровідниках. Залежність опору напівпровідників від температури та освітленості. Застосування напівпровідників.
- 52. Когерентність. Інтерференція, її застосування в техніці. Дисперсія світла.