logo
Основы оптоинформатики Раздел 1_end

§4.2. Голографическая (распределенная) запись

При голографической записи происходит сложение взаимно-когерентных волн (опорной и объектных) в результате которого происходит преобразование фазовых соотношений в амплитудную структуру интерференционной картины. Регистрация этой интерференционной картины на оптическом диске и приводит к записи голограммы.

Рис.4.2. Пример схемы для голографической записи

Для считывания голограммы используют опорную волну, дифракция которой на интерференционной структуре голограммы приводит к появлению волны, в точности соответствующей объектной волне при записи. Детектирование и декодирование (в случае цифровой записи) этой волны позволяет извлечь записанную на голографическом диске информацию. В результате того, что на голограмме одновременно можно зарегистрировать значительное количество (N) бит информации при рассмотрении предельных значений плотности записи данных, необходимо учитывать «способность» голограммы восстанавливать различные «части» объекта, количество которых в нашем случае будет равно числу одновременно записываемых битов. Поэтому минимальный размер голограммы будет определяться исходя из минимально возможного интервала в пределах которого сохраняются свойства восстановленного изображения. В таком случае, размер голограммы для записи N бит информации должен составлять не менее:

D=(N/)1/2 (4.2)

где  - угол схождения объектной волны при записи (см. рис.4.2)

Таким образом, при =1 стерадиан (около 600), =0,633 мкм (He-Ne лазер) и N=100, минимальный размер голограммы составляет D=6,3 мкм, а на площади в 1 см2 можно записать до 2,5108 бит информации, что сравнимо с побитовой оптической плотностью записи. Однако, в случае использования трехмерных сред для записи голограмм, плотность записи может значительно превышать это значение, поскольку на один и тот же участок диска записывают одновременно много голограмм, отличающихся либо длиной волны записи, либо направлением опорной волны. В настоящее время на полимерном материале толщиной 1 мм достигнута плотность записи до 1010 бит/см2, что примерно в 5 раз превышает значения величин, полученных для побитовой записи на DVD дисках (4109 бит/см2). Теоретический предел для объемной записи оценивается примерно в 1 Тбит/см2 (1012 бит/см2 ).

Одним из важнейших свойств голографической записи является то, что при записи большого числа объектных волн (каждая из которых в нашем случае представляет один бит информации) каждая из этих волн распределена по всей площади голограммы. Таким образом, повреждение или утрата части голограммы будет приводить лишь к уменьшению уровня сигнала при её считывании, не нарушая при этом целостности картины восстановленных объектных волн. По этой причине, распределенная (голографическая) запись является принципиально гораздо более устойчивой к появлению каких-либо ошибок или сбоев в канале считывания.

Кроме этого, следствием такого «параллелизма» записи является «параллелизм» считывания, поскольку каждая из голограмм одновременно воспроизводит все записанные в ней данные. Это позволяет существенно увеличить не только скорость записи, но и считывания информации с оптического голографического диска. Поэтому, голографические системы памяти могут быть легко интегрированы для взаимодействия с оптическими компьютерами, где реализуется принцип параллельности обработки информации. Параллельный доступ ко всей информации, хранящейся в голографическом запоминающем устройстве делает возможным извлечение полезной информации за время одного периода обращения, то есть существенно уменьшается время считывания.