Глава 2. Теория информации для оптических систем §1. Основы теории информации
Термин "информация" происходит от латинского слова "informatio", что означает сведения, разъяснения, изложение. Информация — это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В третьем издании Большой Советской Энциклопедии читаем: «ИНФОРМАЦИЯ - любые сведения и данные, отражающие свойства объектов в природных (биологических, физических и др.), социальных и технических системах и передаваемые звуковым, графическим (в том числе письменным) или иным способом без применения или с применением технических средств». В словаре Вебстера следующее определение термина: «Сообщение, или получение знаний или сведений. Факты, приготовленные для сообщения, в отличие от тех, которые воплощены в мысли или знании. Данные, новости, сведения, знания, полученные путем изучения или наблюдения ...». С точки зрения философии, информация — нематериальная сущность, при помощи которой с любой точностью можно описывать реальные (материальные), виртуальные (возможные) и понятийные сущности. Информация - противоположность неопределенности. Информация как физическая величина – количественная мера упорядоченности исследуемой системы. Все устройства передачи, отображения и хранения информации (в том числе и оптические) характеризуются данной количественной мерой.
Теория информации рассматривается как существенная часть кибернетики. Кибернетика — это наука об общих законах получения, хранения, передачи и переработки информации. Ее основной предмет исследования — это так называемые кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем: автоматические регуляторы в технике, ЭВМ, мозг человека или животных, биологическая популяция, социум. Часто кибернетику связывают с методами искусственного интеллекта, т.к. она разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основными разделами (они фактически абсолютно самостоятельны и независимы) современной кибернетики считаются: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления и теория распознавания образов.
Родоначальниками кибернетики (датой ее рождения считается 1948 год, год соответствующей публикации) считаются американские ученые Норберт Винер (Wiener, он — прежде всего) и Клод Шеннон (Shannon, он же основоположник теории информации).
|
|
А Б
Рис.39. Клод Шеннон (1916-2001 г.г.) (А), Норберт Винер (1894 - 1964 г.г.)(Б)
В наш век возрастающей дифференциации человеческих знаний Клод Шеннон является исключительным примером соединения глубины отвлеченной математической мысли с широким и в то же время совершенно конкретным пониманием больших проблем техники. Его в равной мере можно считать одним из первых математиков и одним из первых инженеров последних десятилетий. Своеобразная роль ему принадлежит в создании кибернетики. В отличие от Норберта Винера Шеннон не занимался пропагандой и систематизацией этой новой науки. Но он создал основы теории информации и в значительной мере предопределил своими работами развитие общей теории дискретных автоматов, которые составляют две большие главы кибернетики, занимающие в ней едва ли не центральное положение.
Теория информации тесно связана с такими разделами математики как теория вероятностей и математическая статистика, а также прикладная алгебра, которые предоставляют для нее математический фундамент. С другой стороны теория информации исторически и практически представляет собой математический фундамент теории связи. Часто теорию информации вообще рассматривают как одну из ветвей теории вероятностей или как часть теории связи. Теория информации представляет собой математическую теорию, посвященную измерению информации, ее потока, “размеров” канала связи и т. п., особенно применительно к радио, телеграфии, телевидению и к другим средствам связи.
- Раздел I
- В.Г. Беспалов, в.Н. Крылов, в.Н. Михайлов основы оптоинформатики
- Раздел I
- Введение
- Глава 1, глава 2 и Приложения написаны в.Г. Беспаловым, глава 3 написана в.Н. Крыловым и глава 4 написана в.Н. Михайловым.
- §2. Предельные возможности элементной базы электронной компьютерной техники
- §3. Оптические технологии в информатике
- §4. Аналоговые оптические вычисления и процессоры
- §5. Оптический процессор Enlight256
- §6. Голографические методы обработки информации
- §7. Цифровые оптические процессоры
- Глава 2. Теория информации для оптических систем §1. Основы теории информации
- § 1.1. Количество информации в системе равновероятных событий. Подход Хартли.
- §1.2. Количество информации в системе событий с различными вероятностями. Подход Шеннона
- §1.3. Обобщенная схема информационной системы
- §1.4. Основные характеристики информационной системы
- §1.5. Дискретизация и теорема отчетов (Котельникова)
- §1.6. Пропускная способность канала при наличии белого теплового шума
- §1. 7. Избыточность информации
- §2. Теория информации в оптике
- §2.1. Число пространственных степеней свободы когерентных оптических сигналов
- §2.2. Теоремы д. Габора
- §2.3. Число степеней свободы частично когерентных оптических сигналов
- § 2.4. Информационная емкость голограмм
- Глава 3. Источники излучения для оптоинформатики
- §1. Физические основы работы лазеров
- §1.1. Оптическое усиление
- §1.2. Взаимодействие излучения с веществом.
- 1.2.1. Излучение абсолютно чёрного тела.
- 1.2.2. Статистика Больцмана
- 1.2.3. Коэффициенты Эйнштейна.
- §1.3. Поглощение и усиление
- 1.3.1. Инверсная населённость.
- §1.4. Принципы лазерной генерации
- 1.4.1. Методы создания инверсной населённости.
- Трёхуровневая система.
- Четырёхуровневая система.
- Методы накачки активных лазерных веществ.
- §1.5. Основные типы лазеров: классификация лазеров по агрегатному состоянию активного вещества
- §1.6. Твердотельные лазеры
- §1.5. Газовые лазеры
- §1.5. Жидкостные лазеры
- §2. Полупроводниковые лазеры §2.1. Физические основы работы полупроводникового лазера
- §2.2. Полупроводники
- §2.3. Прямозонные и непрямозонные полупроводники
- §2.4. Полупроводниковые светодиоды
- §2.5. Основные параметры полупроводниковых лазеров
- §2.6. Полупроводниковые лазеры на основе гетероструктур
- §2.7. Квантоворазмерные структуры
- §2.8. Безопасность лазеров
- §3. Источники излучения фемтосекундной и аттосекундной длительности §3.1. Предельно короткие импульсы света и сверхсильные поля
- 3.2. Методы генерации сверхкоротких, в том числе фемтосекундных импульсов
- 3.2.1. Электрооптический затвор на основе эффекта Поккельса.
- 3.2.2. Работа лазера в режиме синхронизации мод.
- §3.2. Генерация аттосекундных импульсов электромагнитного излучения
- Глава 4. Локальная и распределенная запись информации §4.1. Локальная (побитовая) запись
- §4.2. Голографическая (распределенная) запись
- §4.3. Оптические дисковые системы записи и хранения информации
- §4.4. Голографические системы записи информации
- §4.5. Быстродействие оптических устройств записи и хранения информации
- Список литературы
- Приложения Параметры и свойства оптических материалов
- Механизмы поглощения оптического излучения в полупроводниках
- Эффект Франца-Келдыша (электроабсорбционный эффект) в полупроводниках
- Квантово-размерный эффект Штарка
- Кафедра фотоники и оптоинформатики