35. Устройство микроскопа. Формула для увеличения. Разрешающая способность. Предел разрешения. Полезное увеличение. Специальные приемы микроскопии.
Микроскоп- оптический прибор, предназначенный для получения увеличенного изображения микрообъектов и определения их размеров.
Оптическая система микроскопа состоит из 2х частей:
1) осветительная- осветитель, осветительное зеркало, диафрагма, конденсор (свет от осветителя попадает на зеркало и собирается конденсором).
2) наблюдательная – объектив - создает действительное увеличенное перевернутое изображение, окуляр- создание увеличенного мнимого изображения.
Увеличение микроскопа определяется по формуле: Г=∆ *S/f1*f2. f1,f2- фокусные расстояния объектива и окуляра, S- расстояние наилучшего зрения, ∆ - оптическая длина тубуса(расстояние м\у задним фокусом объектива и перед фокусом окуляра).
Разрешающая способность - способность давать раздельное изображение 2х соседних точек объекта.
Наименьшее расстояние м\у 2мя точками, при котором изображения этих точек не сливаются - предельно разрешимым расстоянием.
Увеличенное изображение на сетчатке глаза должно быт не меньше величины, разрешаемой глазом- Zгл. В связи с этим вводится понятие полезного увеличения: Г=Zгл/Z=(Zгл*2n*sinф)/λ
Специальные приемы микроскопии: метод светлого поля- поток лучей из конденсоров проходит через препарат, лучи, прошедшие препарат, не рассеянные и не поглащенные объектами, создают светлое поле. Детали препарата, отличающиеся от окружающей среды поглощающей способностью, частично поглощают, частично рассеивают попавший на них свет, что и обусловливает возникновение изображения.
В случае если детали объекта мало различимы по своим адсорбционным свойствам, применяют способ окрашивания, при котором части препарата за счет различного поглощения красителя приобретают разную оптическую плотность.
36. Индуцированное излучение. Оптически квантовые генераторы (лазеры). Основные свойства лазерного излучения. Применение лазеров в биологических исследованиях и медицине. Лазерные аппараты для коагуляции и обработке тканей.
Лазер- квантовый генератор видимого диапазона излучения (рубин в качестве рабочего вещества). Этот оптический квантовый генератор (ОКГ) создает импульсное излучение с длиной волны 694,3 нм и мощностью в импульсе 1 МВт. Возбуждение осуществляется специальной лампой.
Применение лазеров основано на свойствах их излучения: строгая монохроматичность (длина волны прим-но 0.01 нм), достаточно большая мощность, узость пучка и когерентность. Направления применения в медицине:
1) основано на свойстве разрушать биологические ткани, что совместно с коагуляцией белка позволяет производить некоторые бескровные рассечения (прибор офтальмокоагулятор, хирургический нож)
2) связано с голографией (метод получения изображения путем дифракции и интерференции) ,например гастроскоп.
- 1. Затухающие колебания. Дифференциальное уравнение затухающего колебания. Выражение для смещения. Коэффициент затухания. Логарифмический коэффициент затухания.
- 2. Вынужденные колебания. Автоколебания.
- 3.Сложение гармонических колебаний, направленных по одной прямой. Сложное колебание и его гармонический спектр. Сложение взаимно-перпендикулярных колебаний.
- 4. Механические волны. Уравнение волны. Поток энергии волны. Вектор Умова. Эффект Доплера и его использование для медико-биологических исследований.
- 5.Акустика. Физические характеристики звука. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Звуковые измерения. Акустический импеданс. Аудиометрия.
- 6. Физика слуха. Понятие о звукопроводящей и звуковоспринимающей системах. Физические основы звуковых методов исследования в клинике. Поглощение и отражение звуковых волн.
- 8.Инфразвук, особенности его распространения. Биофизические основы действия инфразвука на биологические объекты. Вибрация, их физические характеристики.
- 9. Внутреннее трение (вязкость) жидкости. Ньютоновские и неьнютоновские жидкости. Реологические свойства крови, плазмы, сыворотки.
- 10. Ламинарное и турбулентное течения. Число Рейнольдса. Ламинарное течение вязкой жидкости в цилиндрических трубах. Формула Пуазейля. Гидравлическое сопротивление.
- 11. Капиллярные явления, их значения в биологии и медицине. Газовая эмболия.
- 12. Механические и электрические модели кровообращения. Ударный объем крови.
- 13. Пульсовые волны, зависимость их скорости распространения от параметров сосуда. Методы определения скорости кровотока.
- 14. Физические основы клинического метода измерения давления крови. Работа и мощность сердца.
- 15. Электрический диполь. Диполь в электрическом поле. Электрическое поле диполя. Понятия о дипольном генераторе.
- 17. Понятие о мультипольном эквивалентном электричекском электрическом генераторе сердца. Физические основы векторэлектрокардиографии.
- 18. Диэлектрики. Диэлектрическая проницаемость биологических тканей и жидкостей. Использование прямого и обратного пьезоэлектрического эффекта в мед. Аппаратуре. Пьезоэффект костной ткани.
- 19. Электропроводимость биологических тканей и жидкостей для постоянного тока. Первичные процессы в тканях при гальванизации и лечебном электрофорезе.
- 20. Переменный ток. Импеданс тканей организма. Эквивалентная электрическая схема тканей организма. Физические основы реографии и её применение в медицине.
- 24. Электроды для съёма биоэлектрического сигнала.
- 25. Датчики медико-биологический информации. Назначение и классификация датчиков. Характеристика датчиков.
- 26. Усиление электрического сигнала. Усилители. Коэффициент усиления. Амплитудные и частотные искажения, их предупреждения. Классификация усилителей.
- 28. Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей.
- 29. Физиотерапевтические аппараты высокочастотной терапии. Терапевтический контур. Аппараты электрохирургии, аппараты микроволновой терапии.
- 30. Интерференция света. Когерентность. Интерферометры и их применение. Интерференционный микроскоп.
- 31. Дифракция света. Дифракция на щели в параллельных лучах. Дифракционная решетка.
- 32. Поляризация света. Свет естественный и плоскополяризованный. Поляризация при двойном лучепреломлении. Поляризационные устройства.
- 33. Вращение плоскости поляризации оптически активными веществами. Поляриметрия и спектрополяриметрия. Поляризационный микроскоп.
- 34.Волоконная оптика и её использование в медицинских приборах. Эндоскоп с волоконной оптикой.
- 35. Устройство микроскопа. Формула для увеличения. Разрешающая способность. Предел разрешения. Полезное увеличение. Специальные приемы микроскопии.
- 37. Поглощение света. Закон Бугера-Ламберга-Бера. Спектры поглощения. Концентрационная колориметрия.
- 38. Рассеяние света мутными средами. Молекулярное рассеяние. Закон Рэлея. Нефелометрия.
- 39. Тепловое излучение тел. Характеристика теплового излучения. Абсолютно черное тело. Серые тела. Закон Кирхгофа. Закон Стефана-Больцмана. Закон Вина.
- 40. Использование термографии в диагностических целях. Устройство термографа и тепловизора.
- Вопрос 43
- Вопрос 44
- Вопрос 45.
- Вопрос 46
- Вопрос 47
- Вопрос 48 Биологические мембраны и их функции
- Вопрос 49
- Вопрос 50
- Вопрос 51
- Вопрос 52
- Вопрос 53
- Вопрос 54
- 56. Механизм передачи возбуждения от одной клетки к другой. Структура и функции синапса химического типа.
- 58. Свойства молекул в электронно-возбужденном состоянии. Процессы в молекулах днк и рнк под действием электромагнитных волн оптического диапазона.
- 59. Действие уф на белковые молекулы. Образование свободных радикалов.
- 63. Понятие об ионизирующих излучениях, виды ионизирующих излучений. Механизмы взаимодействия электромагнитных и корпускулярных ионизирующих излучений с веществом.
- 64. Механизмы повреждающего действия ионизирующих излучения на организм человека и животных. Прямое и косвенное действие ионизирующих излучений.
- 65. Особенности видовой и тканевой чувствительности. Закон Бергонье и Трибондо.
- 66. Принципы защиты от ионизирующих излучений.