logo search
Lin

7.3Распределения действующих значений напряжения и тока

Интерес представляют распределения амплитудных или действующих значений напряжения и тока вдоль отрезка линии (0 £ x £ l). Как и в конечном отрезке линии с потерями, действующие значения напряжения и тока изменяются вдоль отрезка линии волнообразно. Отличительная особенность распределений этих величин в рассматриваемом случае заключается в том, что описывающие их функции U(x) и I(x) являются периодическими с периодом l/2. Для подтверждения этого факта достаточно обратиться, например, к Рис. 14 и 15 и учесть, что для отрезка линии без потерь годографы векторов Uп(x) и Uо(x) вырождаются в окружности радиусов Uп2 и Uо2.

Особенности распределений U(x) и I(x) в конечном отрезке линии без потерь можно выявить также с помощью семейства векторных диаграмм нормированных напряжения и тока, построенных для ряда сечений. С этой целью обратимся к характеристикам его участка в экспонентах (58) и (59) и запишем выражения искомых нормированных распределений:

Рис. 22

,

.

Здесь нормированные комплексы действующих значений напряжения и тока определяются отношениями и .

В конце отрезка линии ( ) , , то есть нормированные значения и равны, соответственно, значениям модулей суммы и разности единичного вектора и вектора (Рис. 22).

С увеличением расстояния x от конца отрезка вектор r поворачивается на угол по ходу часовой стрелки. Вместе с ним повернутся и векторы нормированных комплексов действующих значений напряжения и тока, заняв новые положения и .

Из Рис. 22 видно, что максимумы действующих значений напряжения соответствуют нижней точке окружности радиуса r, а минимумы – её верхней точке. Для экстремальных действующих значений тока справедливы обратные утверждения. Таким образом, в сечениях максимумов действующих значений напряжения U находятся минимумы действующих значений тока I, и наоборот, минимумы U совпадают с максимумами I.

Центру диаграммы соответствует коэффициент отражения . Из диаграммы видно, что в этом случае и , то есть в отрезке линии имеются только прямобегущие синфазные волны напряжения и тока. Окружность соответствует режиму стоячих волн. При этом векторы нормированных значений напряжения и тока взаимно перпендикулярны, как стороны вписанного треугольника, опирающегося на диаметр. Следовательно, в этом случае напряжение и ток любого отрезка линии, изменяются в квадратуре (исключая сечения, соответствующие верхней и нижней точкам диаграммы), вследствие чего среднее значение потока мощности вдоль отрезка линии без потерь равно нулю.

Для вывода зависимостей U(x) и I(x) обратимся сначала к (58) и найдём его модуль:

,

Отсюда в результате несложных преобразований следует

. (0)

Заменяя здесь формально идентификаторы U на I, а r на – r, получаем

. (0)

Рис. 23

Таким образом, распределения действующих значений напряжения U(x) и тока I(x) определяются функциями

и

,

определёнными на интервале [0, l], представляющими распределения нормированных амплитуд или действующих значений напряжения и тока . Отметим особенности этих функций (Рис. 23):

, , ;.

определяются лишь значением аргумента коэффициента отражения n.

В режиме бегущих волн ( ) функции и графики распределений нормированных действующих значений напряжения и тока вырождаются в два совпадающих отрезка, параллельных оси абсцисс.

В режиме стоячих волн ( ) из общих выражений функций и по формулам приведения получим

,

.

Для режима стоячих волн характерно наличие в отрезке линии сечений, в которых амплитуда колебания напряжения или тока равна нулю (узлы напряжения или, соответственно, тока) и сечения, в которых амплитуда колебаний максимальна (пучности напряжения или тока): и . Кроме того, ни узлы, ни пучности волн напряжения и тока с течением времени вдоль отрезка линии не перемещаются. Вот почему эти волны называют стоячими.

Среднее за период значение мощности PАп(x), передаваемой к концу отрезка, найдём как вещественную часть последнего выражения раздела 7.1:

. (0)

Отсюда видно, что среднее значение передаваемой вдоль отрезка мощности не зависит от координаты его сечения – результат, не удивительный для отрезка линии без потерь.