Интегральные микросхемы (имс)
Усложнение электронных устройств, в которых количество элементов достигает сотен тысяч, вызвало:
1) снижение надежности;
2) увеличение габаритов и массы;
3) рост потребляемой энергии;
4) повышение стоимости.
Создание новых изделий перспективно на основе элементной интеграции, т. е. объединения в одном миниатюрном элементе многих простейших элементов (диодов, транзисторов, резисторов). Полученный в результате объединения сложный элемент называют интегральными микросхемами (ИМС).
ИМC − это электронное изделие с высокой плотностью упаковки электрически соединенных элементов, выполняющее определенную функцию преобразования и обработки сигнала (ГОСТ 17021-75).
Плотность упаковки (показатель миниатюризации) − количество элементов в единице объема (до 105 эл/см3).
Степень интеграции − это количество элементов, входящих в ИМС; до 10 элементов − первая степень; от − 2 до 100 − вторая; до 101 – третья. Современная ИМС − до шестой степени.
Основные достоинства ИМС: высокая надежность, малые размеры и масса, экономичность, быстродействие.
Недостаток: небольшая выходная мощность.
По технологии ИМС делят на:
1) гибридно-пленочные, выполняемые в виде пленок, наносимых на поверхность из диэлектрика (керамика, стекло, пластмасса) и навесных бескорпусных активных элементов (транзисторов, дросселей, конденсаторов), прикрепленных к основанию. С помощью масок и трафаретов на подложке формируются пассивные элементы. Плотность упаковки − 150 эл/см3, степень интеграции − первая, вторая. Обеспечивается высокая точность параметров;
2) полупроводниковые, в которых все элементы формируются в объеме или на поверхности пластинки полупроводника. Изготовление осуществляется в несколько этапов с помощью фотолитографии, диффузии, ионного легирования. Плотность упаковки − 105 эл/см3; степень интеграции – шестая.
По назначению ИМС делят на:
1) линейно-импульсные, в которых обеспечивается приблизительная пропорциональность между входными и выходными величинами (пример, усилитель);
2) логические ИМС, в которых выходное напряжение зависит от наличия или отсутствия напряжения на различных входах устройства. Обозначения ИМС состоит из четырех элементов: первый элемент − обозначает конструкторско-технологическое исполнение: 1, 5, 7 − полупроводниковые, 2, 4, 6, 8 − гибридные, 3 − прочие; второй элемент (две или три цифры) − порядковый номер разработки; третий элемент − две буквы − функциональное назначение; четвертый − порядковый номер разработки ИМС по функциональному признаку.
Пример, КI40УД14А
К − ИМС для широкого применения,
I – полупроводниковая
40 − порядковый номер серии;
УД − операционный усилитель;
14 − порядковый номер операционного усилителя;
А − коэффициент усиления определенного значения.
- 1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- Законы Ома и Кирхгофа
- Режимы работы электрических цепей
- Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- Лекция 2 Классификация цепей и особенности их расчета
- Метод прямого применения законов Кирхгофа
- Метод наложения (суперпозиции)
- Метод контурных токов
- Метод эквивалентного генератора
- Метод узловых напряжений (метод двух узлов)
- Уравнение баланса мощностей электрической цепи
- Потенциальная диаграмма
- Векторное изображение синусоидальных эдс, напряжений и токов
- Комплексный метод расчета электрических цепей синусоидального тока
- Законы Ома и Кирхгофа в комплексной форме
- Пассивные элементы в цепи синусоидального тока
- Цепь с резистивным элементом
- Лекция 4
- Цепь с последовательным соединением резистивного и индуктивного элементов
- Цепь с емкостным элементом
- Цепь с последовательным соединением резистивного и емкостного элементов
- Электрическая цепь с последовательным соединением элементов с r, l, c
- Треугольники напряжений, сопротивлений и мощностей
- Резонанс напряжений
- Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- Треугольники токов и проводимостей
- Параллельное соединение нескольких электроприемников
- Резонанс токов
- Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- Мощность однофазной цепи синусоидального тока
- Методика расчета однофазных цепей синусоидального тока
- Лекция 7
- Соединение обмоток генератора и фаз приемника звездой
- Трехфазный приемник, соединенный по схеме «звезда»
- Соединение фаз приемника по схеме «треугольник»
- Определение мощности и коэффициента мощности трехфазного приемника
- Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- Переходные процессы при заряде и разряде конденсатора
- Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- Действующее значение несинусоидальных электрических величин
- Мощность электрической цепи при несинусоидальных напряжениях и токах
- Лекция 10 основы электроники
- Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- Полевые транзисторы
- Тиристоры
- Интегральные микросхемы (имс)
- Лекция 13
- Т рехфазный мостовой управляемый выпрямитель (ув).
- Сглаживающие фильтры
- Усилители на биполярных и полевых транзисторах
- Усилительный каскад на биполярном транзисторе с общим эмиттером
- Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- Температурная стабилизация
- Понятие о многокаскадных усилителях напряжения
- Усилительные каскады на полевых транзисторах с общим истоком
- Режимы работы усилительных каскадов
- Лекция 15 Усилители мощности
- Обратные связи в усилителях
- Балансный усилительный каскад (дифференициальный каскад)
- Лекция 16 Операцинные усилители
- Примеры построения аналоговых схем на операционном усилителе
- Импульсные устройства
- Ключевой режим работы транзистора
- Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- Мультивибраторы
- Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- Триггеры
- Регистры
- Лекция 18 трансформаторы.
- Опыт короткого замыкания
- Уравнения и схема замещения трансформатора. Приведенный трансформатор
- Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- Векторная диаграмма трансформатора
- Внешняя характеристика и коэффициент полезного действия трансформатора
- Измерительные трансформаторы
- Лекция 20 Трехфазные трансформаторы
- Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- Принцип работы асинхронного двигателя
- Электродвижущая сила и электромагнитный момент асинхронного двигателя
- Анализ механической характеристики асинхронного двигателя
- Лекция 22. Способы торможения асинхронных двигателей
- Особенности новых серий двигателей
- Лекция 24 синхронные машины Устройство и типы синхронных машин
- Синхронный генератор
- Лекция 25 Принцип работы и пуск синхронного двигателя
- Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- Регулирование коэффициента мощности
- Достоинства и недостатки синхронных двигателей
- Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- Электродвижущая сила и электромагнитный момент машины постоянного тока
- Лекция 27 Реакция якоря
- Коммутация машин постоянного тока
- Генератор постоянного тока с независимым возбуждением
- Генераторы постоянного тока с самовозбуждением
- Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- ППуск двигателей постоянного тока
- Регулирование частоты вращения двигателя постоянного тока
- Торможение двигателей постоянного тока
- Рабочие характеристики двигателя постоянного тока
- Лекция 29 основы электропривода Электропривод и его классификация
- Механические характеристики производственных механизмов и эд
- Нагревание и охлаждение двигателя
- Лекция 30 выбор электродвигателя
- Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- Расчет мощности двигателя
- Лекция 32 управление электроприводом
- Основы электроснабжения
- Категории электроприемников и их электроснабжение
- Содержание и порядок разработки проекта системы электроснабжения
- Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- Коэффициенты спроса и мощности основных электроустановок
- Средневзвешенный коэффициент мощности и мощность компенсатора
- Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- Понятия об учете и нормировании электроэнергии Учет электрической энергии
- Системы оплаты электрической энергии
- Общезаводские нормы расхода электроэнергии (фрагмент)
- Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- Суммарные нагрузки на птп
- Алгоритм исследования
- Расчетные нагрузки на трансформатор птп
- Выводы и обобщения
- Литература