Коммутация машин постоянного тока
При вращении ротора машины постоянного тока щетки скользят по поверхности коллектора, поочередно подключая во внешнюю цепь секции обмотки якоря. При этом происходит переключение тока в подключаемых секциях, называемое коммутацией. Коммутация и
грает важную роль в работе коллекторных машин, определяя искрение под щетками. Процесс коммутации происходит следующим образом.
В момент t1 щетка находится на коллекторной пластине 1, ток во внешнюю цепь течет через точку «а» из секций, расположенных как справа от коммутирующей секции «abc»,так и слева от нее, вследствие чего ток по коммутирующей секции течет от точки «с» к точке «а».
При движении коллектора слева направо щетка перемещается по поверхности коллектора справа налево и в момент времени t2 располагается посередине между пластинами коллектора 1 и 2. Ток теперь течет во внешнюю цепь через обе пластины, перекрываемые щеткой. Если ширина перекрываемых частей коллекторных пластин точно одинакова, токи, текущие через них, будут равны, т. к. в этом случае сопротивления для этих токов будут равны. Следовательно, ответвляться в секцию «abc» ток не будет ни справа, ни слева.
Наконец, в момент времени t3 щетка находится над второй пластиной, ток во внешнюю цепь течет через точку «с», направление тока в коммутирующей секции по сравнению с моментом t1 меняется на противоположное.
Так как перемещение щетки по коллектору заведомо равномерное, отрезки времени t1 – t2 и t2 – t3 равны. Рассматривая изменение тока в секции «авс» только как функцию перемещения щетки, можно сделать вывод, что ток линейно зависит от времени, как показано линией 1. Такая коммутация называется прямолинейной и представляет собой идеализированный случай. Фактически процесс коммутации протекает сложнее, так как изменение тока в коммутирующей секции зависит не только от перемещения щетки, но и от ЭДС, индуктируемых в этой секции. Это прежде всего ЭДС самоиндукции
еL = – Ldiabc/dt, где L – индуктивность секции, зависящая от квадрата витков wc2. Здесь индуктируется ЭДС взаимоиндукции ем = – Mdi/dt, определяемая скоростью изменения тока i' в соседней секции, тат как фактически всегда щетка больше ширины одной коллекторной пластины и перекрывает одновременно 2 – 4 пластины. Поэтому процесс коммутации всегда идет одновременно в нескольких секциях.
ЭДС еL и ем имеют индуктивный характер и в сумме могут быть обозначены ер = еL + ем.
Ток в секции «аbc» от этой ЭДС iр = ер/zc в течение первой половины периода коммутации t1 – t2 препятствует изменению тока ia, а индуктивный характер тока проявляется в задержке электромагнитных процессов в коммутирующей секции. В результате в оставшуюся часть периода коммутации ток в секции «аbc» изменяется более резко, под сбегающим краем щетки возникает повышенная плотность тока. Изменение тока ia при наличии реактивной ЭДС ер в коммутирующей секции описывается кривой 2.Такая коммутация называется замедленной. Она приводит к искрению под сбегающим краем щетки.
Кроме реактивных ЭДС в коммутируемой секции при равположении щёток не на физической нейтрали, индуктируется ЭДС внешнего поля
ек = –wcdФ/dt, где Ф – результирующий магнитный поток в машине. Так как МДС внешнего поля направлена против ЭДС якоря, при преобладании ЭДС внешнего поля ек > ер, определяемый ею ток iк = ек/zc направлен в t1 – t2 встречно току ia и ускоряет его уменьшение. Это ускоренная коммутация, при которой перегружается набегающий край щетки, под которым будет наблюдаться искрение (кривая 3).
Таким образом, наиболее благоприятной является прямолинейная коммутация, при которой никаких ЭДС в секциях не индуктируется, не происходит запасание энергии – поэтому разрыв цепи такой секции не связан с искрением, это безискровая коммутация.
Для приближения к этому режиму надо уменьшить сумму ЭДС ер+ ек. Так как их действие противоположно, поставленная задача будет решена, если ер= ек .. Требуемая величина ек достигается либо сдвигом щёток с физической нейтрали (по ходу якоря в генераторе и противоположно – в двигателе), либо созданием дополнительного потока с помощью обмотки добавочных полюсов. Второй путь – основной. Установкой добавочных полюсов улучшают коммутацию и компенсируют реакцию якоря.
На качество коммутации влияет также правильный выбор материала щеток, поддержание чистоты коллектора и щётки, силы притяжения щетки к коллектору – вообще правильная эксплуатация машин.
При искрении разрушаются поверхности коллектора и щеток, увеличивается сопротивление скользящих контактов (что ведет к нагреву коллектора), возникают радиопомехи. Искрение может вызываться также плохим состоянием щеточно-коллекторного узла и неправильной его установкой.
Для исключения искажения поля под полюсами (смещения результирующего поля Ф) в машинах средней и большой мощности применяют компенсирующую обмотку, включенную последовательно с якорем встречно его полю. Искрение исключают размещением на геометрической нейтрали (ГН) узких добавочных полюсов. Их обмотки включают последовательно и встречно с обмоткой якоря. В узкой зоне вблизи ГН поле якоря компенсируется полем добавочного полюса. При перегрузках генератора Iя > 3Iя.ном дополнительные полюсы насыщаются и компенсация полей нарушается. Искрение наблюдается также при большой Ω из-за роста uL. Добавочные полюсы используют в машинах с Р > 1 кВт. В машинах малой мощности, не имеющих добавочных полюсов, для уменьшения искрения щетки смещают с ГН на ФН (в генераторе по направлению Ω, в двигателе – против). Недостаток этого способа – размагничивание машины и появление продольной МДС.
- 1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- Законы Ома и Кирхгофа
- Режимы работы электрических цепей
- Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- Лекция 2 Классификация цепей и особенности их расчета
- Метод прямого применения законов Кирхгофа
- Метод наложения (суперпозиции)
- Метод контурных токов
- Метод эквивалентного генератора
- Метод узловых напряжений (метод двух узлов)
- Уравнение баланса мощностей электрической цепи
- Потенциальная диаграмма
- Векторное изображение синусоидальных эдс, напряжений и токов
- Комплексный метод расчета электрических цепей синусоидального тока
- Законы Ома и Кирхгофа в комплексной форме
- Пассивные элементы в цепи синусоидального тока
- Цепь с резистивным элементом
- Лекция 4
- Цепь с последовательным соединением резистивного и индуктивного элементов
- Цепь с емкостным элементом
- Цепь с последовательным соединением резистивного и емкостного элементов
- Электрическая цепь с последовательным соединением элементов с r, l, c
- Треугольники напряжений, сопротивлений и мощностей
- Резонанс напряжений
- Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- Треугольники токов и проводимостей
- Параллельное соединение нескольких электроприемников
- Резонанс токов
- Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- Мощность однофазной цепи синусоидального тока
- Методика расчета однофазных цепей синусоидального тока
- Лекция 7
- Соединение обмоток генератора и фаз приемника звездой
- Трехфазный приемник, соединенный по схеме «звезда»
- Соединение фаз приемника по схеме «треугольник»
- Определение мощности и коэффициента мощности трехфазного приемника
- Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- Переходные процессы при заряде и разряде конденсатора
- Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- Действующее значение несинусоидальных электрических величин
- Мощность электрической цепи при несинусоидальных напряжениях и токах
- Лекция 10 основы электроники
- Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- Полевые транзисторы
- Тиристоры
- Интегральные микросхемы (имс)
- Лекция 13
- Т рехфазный мостовой управляемый выпрямитель (ув).
- Сглаживающие фильтры
- Усилители на биполярных и полевых транзисторах
- Усилительный каскад на биполярном транзисторе с общим эмиттером
- Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- Температурная стабилизация
- Понятие о многокаскадных усилителях напряжения
- Усилительные каскады на полевых транзисторах с общим истоком
- Режимы работы усилительных каскадов
- Лекция 15 Усилители мощности
- Обратные связи в усилителях
- Балансный усилительный каскад (дифференициальный каскад)
- Лекция 16 Операцинные усилители
- Примеры построения аналоговых схем на операционном усилителе
- Импульсные устройства
- Ключевой режим работы транзистора
- Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- Мультивибраторы
- Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- Триггеры
- Регистры
- Лекция 18 трансформаторы.
- Опыт короткого замыкания
- Уравнения и схема замещения трансформатора. Приведенный трансформатор
- Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- Векторная диаграмма трансформатора
- Внешняя характеристика и коэффициент полезного действия трансформатора
- Измерительные трансформаторы
- Лекция 20 Трехфазные трансформаторы
- Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- Принцип работы асинхронного двигателя
- Электродвижущая сила и электромагнитный момент асинхронного двигателя
- Анализ механической характеристики асинхронного двигателя
- Лекция 22. Способы торможения асинхронных двигателей
- Особенности новых серий двигателей
- Лекция 24 синхронные машины Устройство и типы синхронных машин
- Синхронный генератор
- Лекция 25 Принцип работы и пуск синхронного двигателя
- Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- Регулирование коэффициента мощности
- Достоинства и недостатки синхронных двигателей
- Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- Электродвижущая сила и электромагнитный момент машины постоянного тока
- Лекция 27 Реакция якоря
- Коммутация машин постоянного тока
- Генератор постоянного тока с независимым возбуждением
- Генераторы постоянного тока с самовозбуждением
- Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- ППуск двигателей постоянного тока
- Регулирование частоты вращения двигателя постоянного тока
- Торможение двигателей постоянного тока
- Рабочие характеристики двигателя постоянного тока
- Лекция 29 основы электропривода Электропривод и его классификация
- Механические характеристики производственных механизмов и эд
- Нагревание и охлаждение двигателя
- Лекция 30 выбор электродвигателя
- Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- Расчет мощности двигателя
- Лекция 32 управление электроприводом
- Основы электроснабжения
- Категории электроприемников и их электроснабжение
- Содержание и порядок разработки проекта системы электроснабжения
- Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- Коэффициенты спроса и мощности основных электроустановок
- Средневзвешенный коэффициент мощности и мощность компенсатора
- Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- Понятия об учете и нормировании электроэнергии Учет электрической энергии
- Системы оплаты электрической энергии
- Общезаводские нормы расхода электроэнергии (фрагмент)
- Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- Суммарные нагрузки на птп
- Алгоритм исследования
- Расчетные нагрузки на трансформатор птп
- Выводы и обобщения
- Литература