Комплексный метод расчета электрических цепей синусоидального тока
Все графические методы расчета цепей синусоидального тока не обеспечивают точного расчета электрических цепей, кроме того, они сложны и трудоемки.
Наиболее простым и точным методом расчета электрических цепей синусоидального тока является комплексный метод, основанный на теории комплексных чисел.
Синусоидальная величина изображается вращающимся вектором на комплексной плоскости с осями ±1 и ±j, где - мнимая единица, символ.
За положительное направление вращения вектора принято направление против часовой стрелки. За время, равное одному периоду, вектор совершает один оборот.
На рис. изображен вектор комплексного тока , которому соответствует комплексное число
Составляющие комплексного числа на комплексной плоскости
где I - модуль действующего значения тока, равный длине вектора;
где - действительная составляющая тока; - мнимая составляющая; yi = arctg ( ) – аргумент тока, равный начальной фазе, т. е. угол между вектором и действительной полуосью +1 при t = 0.
Аргумент положительный, если вектор отложен в направлении против часовой стрелки, и отрицательный - если по часовой.
Комплексные значения синусоидальных величин обозначают несинусоидальных - z, S.
Над комплексными числами можно производить все алгебраические действия (при сложении и вычитании удобнее использовать алгебраическую форму, а при умножении, делении, возведении в степень, извлечении корня – показательную).
Алгебраическая форма записи:
.
Тригонометрическая форма записи:
İ = Icosyi + jsinyi .
Показательная форма записи:
İ = Iejyi .
Переход из одной формы записи в другую осуществляется по формуле Эйлера через тригонометрическую форму записи
e±jα = cosα ± j sinα.
Например: İ = 10e j37º = 10cos37˚ + j10sin37º = 10 · 0,8 + j10 0,6 = = 8 + j6 = (8² + 6²)1/2e+jarctg6/8 = 10e+j37º (А).
Поскольку e±j90º = cos90º ± jsin90º = ±j, то умножение комплексного числа на + j приводит к увеличению его аргумента на 90º и повороту вектора на 90º против часовой стрелки (в положительном направлении), умножение на -j – к уменьшению аргумента на 90º и повороту вектора на 90º в отрицательном направлении (по часовой стрелке).
При работе с комплексными числами используют и сопряженные комплексные величины, имеющие одинаковые модули и одинаковые по величине, но противоположные по знаку аргументы:
İ = 10e j37º, А; I* =10e–j37º, А.
Произведение İ I* = 10e j37º 10e–j37º = 100ej0°, À.
Построение векторной диаграммы на комплексной плоскости
1. Определяют модуль и аргумент синусоидальной величины (тока, напряжения, ЭДС).
2. Задаются масштабом этих величин: mU; mI.
3. На комплексной плоскости от действительной оси +1 откладывают векторы в принятом масштабе (направление вектора – угол между осью +1 и вектором – аргумент тока, напряжения или ЭДС).
- 1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- Законы Ома и Кирхгофа
- Режимы работы электрических цепей
- Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- Лекция 2 Классификация цепей и особенности их расчета
- Метод прямого применения законов Кирхгофа
- Метод наложения (суперпозиции)
- Метод контурных токов
- Метод эквивалентного генератора
- Метод узловых напряжений (метод двух узлов)
- Уравнение баланса мощностей электрической цепи
- Потенциальная диаграмма
- Векторное изображение синусоидальных эдс, напряжений и токов
- Комплексный метод расчета электрических цепей синусоидального тока
- Законы Ома и Кирхгофа в комплексной форме
- Пассивные элементы в цепи синусоидального тока
- Цепь с резистивным элементом
- Лекция 4
- Цепь с последовательным соединением резистивного и индуктивного элементов
- Цепь с емкостным элементом
- Цепь с последовательным соединением резистивного и емкостного элементов
- Электрическая цепь с последовательным соединением элементов с r, l, c
- Треугольники напряжений, сопротивлений и мощностей
- Резонанс напряжений
- Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- Треугольники токов и проводимостей
- Параллельное соединение нескольких электроприемников
- Резонанс токов
- Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- Мощность однофазной цепи синусоидального тока
- Методика расчета однофазных цепей синусоидального тока
- Лекция 7
- Соединение обмоток генератора и фаз приемника звездой
- Трехфазный приемник, соединенный по схеме «звезда»
- Соединение фаз приемника по схеме «треугольник»
- Определение мощности и коэффициента мощности трехфазного приемника
- Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- Переходные процессы при заряде и разряде конденсатора
- Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- Действующее значение несинусоидальных электрических величин
- Мощность электрической цепи при несинусоидальных напряжениях и токах
- Лекция 10 основы электроники
- Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- Полевые транзисторы
- Тиристоры
- Интегральные микросхемы (имс)
- Лекция 13
- Т рехфазный мостовой управляемый выпрямитель (ув).
- Сглаживающие фильтры
- Усилители на биполярных и полевых транзисторах
- Усилительный каскад на биполярном транзисторе с общим эмиттером
- Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- Температурная стабилизация
- Понятие о многокаскадных усилителях напряжения
- Усилительные каскады на полевых транзисторах с общим истоком
- Режимы работы усилительных каскадов
- Лекция 15 Усилители мощности
- Обратные связи в усилителях
- Балансный усилительный каскад (дифференициальный каскад)
- Лекция 16 Операцинные усилители
- Примеры построения аналоговых схем на операционном усилителе
- Импульсные устройства
- Ключевой режим работы транзистора
- Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- Мультивибраторы
- Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- Триггеры
- Регистры
- Лекция 18 трансформаторы.
- Опыт короткого замыкания
- Уравнения и схема замещения трансформатора. Приведенный трансформатор
- Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- Векторная диаграмма трансформатора
- Внешняя характеристика и коэффициент полезного действия трансформатора
- Измерительные трансформаторы
- Лекция 20 Трехфазные трансформаторы
- Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- Принцип работы асинхронного двигателя
- Электродвижущая сила и электромагнитный момент асинхронного двигателя
- Анализ механической характеристики асинхронного двигателя
- Лекция 22. Способы торможения асинхронных двигателей
- Особенности новых серий двигателей
- Лекция 24 синхронные машины Устройство и типы синхронных машин
- Синхронный генератор
- Лекция 25 Принцип работы и пуск синхронного двигателя
- Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- Регулирование коэффициента мощности
- Достоинства и недостатки синхронных двигателей
- Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- Электродвижущая сила и электромагнитный момент машины постоянного тока
- Лекция 27 Реакция якоря
- Коммутация машин постоянного тока
- Генератор постоянного тока с независимым возбуждением
- Генераторы постоянного тока с самовозбуждением
- Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- ППуск двигателей постоянного тока
- Регулирование частоты вращения двигателя постоянного тока
- Торможение двигателей постоянного тока
- Рабочие характеристики двигателя постоянного тока
- Лекция 29 основы электропривода Электропривод и его классификация
- Механические характеристики производственных механизмов и эд
- Нагревание и охлаждение двигателя
- Лекция 30 выбор электродвигателя
- Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- Расчет мощности двигателя
- Лекция 32 управление электроприводом
- Основы электроснабжения
- Категории электроприемников и их электроснабжение
- Содержание и порядок разработки проекта системы электроснабжения
- Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- Коэффициенты спроса и мощности основных электроустановок
- Средневзвешенный коэффициент мощности и мощность компенсатора
- Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- Понятия об учете и нормировании электроэнергии Учет электрической энергии
- Системы оплаты электрической энергии
- Общезаводские нормы расхода электроэнергии (фрагмент)
- Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- Суммарные нагрузки на птп
- Алгоритм исследования
- Расчетные нагрузки на трансформатор птп
- Выводы и обобщения
- Литература