Лекция 4
источнике питания , . Комплексное сопротивление цепи , XL = 2πƒL, R = 0, φ = arctg(XL/R) = 90˚, XL/0 = ∞, arctg ∞ = 90°. Ток цепи İL= /Z L = Ue j 0/XLe+j 90˚ = (U/XL) e –j 90˚ = = IL e –j 90. Мощность цепи S = QL= XLIL2 , P = 0. Коэффициент мощности cos φ = 0 , φ = + 90º.
Трансформаторы, электрические двигатели, дроссели, кроме активного сопротивления обладают индуктивным сопротивлением. Индуктивностью обладают все проводники с током. В ряде случаев она мала и ею пренебрегают, но значительна там, где обмотки катушек состоят из большого числа витков провода.
Индуктивность возрастает, если магнитный поток замыкается по пути с малым магнитным сопротивлением (например, по стальному сердечнику).
Рассмотрим идеальную катушку с постоянной индуктивностью L, у которой активное сопротивление равно 0.
Электрическая цепь с индуктивным элементом
Пусть к цепи с приложено напряжение u = Umахsinωt. Под действием напряжения в цепи возникает ток i, который создает магнитный поток Ф. Согласно закону электромагнитной индукции магнитный поток Ф индуцирует в катушке ЭДС самоиндукции
еL = -wdФ/dt = -Ldi/dt,
где w - число витков катушки.
Знак «минус» согласно принципу электромагнитной индукции (закон Ленца) указывает на то, что еL всегда имеет такое направление, при котором она препятствует изменению магнитного потока или тока в цепи.
На рисунке показаны условные положительные направления напряжения u, тока i, ЭДС самоиндукции eL на элементе с индуктивностью L. Условное положительное направление ЭДС еL выбирают из условия, что ее действительное направление в любой момент времени противоположно напряжению на катушке uL.
По II ЗК имеем u - uL = 0, а с учетом того, что uL = - еL, получаем
u = eL = 0
Тогда
Umах sinωt – Ldi/dt = 0, или di/dt = Umахsinωt/L.
При решении этого уравнения получаем выражение для тока в цепи
i = (Umах/L)sinωtdt = - Umахcosωt/ωL = Umахsin - π/2)/ωL =
= Imахsin(ωt - π/2).
Таким образом, в цепи с индуктивностью ток отстает от напряжения на угол π/2 и изменяется по синусоидальному закону.
Величина ωL имеет размерность сопротивления, Гн/с = В·с/А·с = = Ом.
Это индуктивное сопротивление
XL = ωL = 2πfL.
Индуктивное сопротивление прямо пропорционально частоте и индуктивности.
Тогда
Imах= Umах/XL, или I = U /XL.
Так как ЭДС самоиндукции численно равна напряжению на элементе с индуктивностью, то
XLI = U = ЕL
Следовательно, индуктивное сопротивление является коэффициентом пропорциональности между током i и ЭДС самоиндукции eL.
Запишем комплексные напряжение и ток цепи
= Ue j0, ψu = 0o;
İ = Ie -j90, ψi = - 90o.
Сдвиг по фазе между напряжением и током
φ = 0° – (-90° ) = +90o
Комплексное сопротивление цепи
Z = /İ = Ue j0/Ie -j90 = XLej90 = jXL.
Таким образом, комплексное сопротивление цепи с L-элементом равно положительному мнимому числу.
Модуль комплексного сопротивления
Z = XL
Мощность цепи с L-элементом
P = ui = Umахsinωt - Imахsin(ωt-90°) = -UIsin2ωt.
т. е. мгновенная мощность имеет только переменную составляющую. В первую и третью части периода ток направлен от цепи к источнику питания, а во вторую и четвертую – от источника питания к цепи. Таким образом, через четверть периода мощность меняет знак. Такая энергия обмена энергией между источником и приемником, которая не преобразуется в другие виды энергии, называется реактивной. Интенсивность обмена энергией характеризуется реактивной мощностью QL = UI, равной амплитуде мгновенного по направлению с ЭДС самоиндукции, мощность отрицательна и энергия передается от катушки к источнику питания, а во вторую и четвертую четверти периода энергия запасается в магнитном поле катушки.
Выразим полную мощность цепи в комплексной форме
S = = Sejφ = UIcos90° + jUIsin90° = jUI
QL = UI = XLI2,
где QL – реактивная мощность цепи (вар, квар, мвар).
Полная мощность цепи с L-элементом равна реактивной мощности.
Векторная, временная диаграммы цепи с идеальной индуктивностью а также изменение мощности представлены на рисунках.
Временная диаграмма Векторная диаграмма
цепи с L-элементом с L- элементом
- 1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- Законы Ома и Кирхгофа
- Режимы работы электрических цепей
- Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- Лекция 2 Классификация цепей и особенности их расчета
- Метод прямого применения законов Кирхгофа
- Метод наложения (суперпозиции)
- Метод контурных токов
- Метод эквивалентного генератора
- Метод узловых напряжений (метод двух узлов)
- Уравнение баланса мощностей электрической цепи
- Потенциальная диаграмма
- Векторное изображение синусоидальных эдс, напряжений и токов
- Комплексный метод расчета электрических цепей синусоидального тока
- Законы Ома и Кирхгофа в комплексной форме
- Пассивные элементы в цепи синусоидального тока
- Цепь с резистивным элементом
- Лекция 4
- Цепь с последовательным соединением резистивного и индуктивного элементов
- Цепь с емкостным элементом
- Цепь с последовательным соединением резистивного и емкостного элементов
- Электрическая цепь с последовательным соединением элементов с r, l, c
- Треугольники напряжений, сопротивлений и мощностей
- Резонанс напряжений
- Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- Треугольники токов и проводимостей
- Параллельное соединение нескольких электроприемников
- Резонанс токов
- Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- Мощность однофазной цепи синусоидального тока
- Методика расчета однофазных цепей синусоидального тока
- Лекция 7
- Соединение обмоток генератора и фаз приемника звездой
- Трехфазный приемник, соединенный по схеме «звезда»
- Соединение фаз приемника по схеме «треугольник»
- Определение мощности и коэффициента мощности трехфазного приемника
- Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- Переходные процессы при заряде и разряде конденсатора
- Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- Действующее значение несинусоидальных электрических величин
- Мощность электрической цепи при несинусоидальных напряжениях и токах
- Лекция 10 основы электроники
- Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- Полевые транзисторы
- Тиристоры
- Интегральные микросхемы (имс)
- Лекция 13
- Т рехфазный мостовой управляемый выпрямитель (ув).
- Сглаживающие фильтры
- Усилители на биполярных и полевых транзисторах
- Усилительный каскад на биполярном транзисторе с общим эмиттером
- Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- Температурная стабилизация
- Понятие о многокаскадных усилителях напряжения
- Усилительные каскады на полевых транзисторах с общим истоком
- Режимы работы усилительных каскадов
- Лекция 15 Усилители мощности
- Обратные связи в усилителях
- Балансный усилительный каскад (дифференициальный каскад)
- Лекция 16 Операцинные усилители
- Примеры построения аналоговых схем на операционном усилителе
- Импульсные устройства
- Ключевой режим работы транзистора
- Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- Мультивибраторы
- Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- Триггеры
- Регистры
- Лекция 18 трансформаторы.
- Опыт короткого замыкания
- Уравнения и схема замещения трансформатора. Приведенный трансформатор
- Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- Векторная диаграмма трансформатора
- Внешняя характеристика и коэффициент полезного действия трансформатора
- Измерительные трансформаторы
- Лекция 20 Трехфазные трансформаторы
- Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- Принцип работы асинхронного двигателя
- Электродвижущая сила и электромагнитный момент асинхронного двигателя
- Анализ механической характеристики асинхронного двигателя
- Лекция 22. Способы торможения асинхронных двигателей
- Особенности новых серий двигателей
- Лекция 24 синхронные машины Устройство и типы синхронных машин
- Синхронный генератор
- Лекция 25 Принцип работы и пуск синхронного двигателя
- Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- Регулирование коэффициента мощности
- Достоинства и недостатки синхронных двигателей
- Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- Электродвижущая сила и электромагнитный момент машины постоянного тока
- Лекция 27 Реакция якоря
- Коммутация машин постоянного тока
- Генератор постоянного тока с независимым возбуждением
- Генераторы постоянного тока с самовозбуждением
- Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- ППуск двигателей постоянного тока
- Регулирование частоты вращения двигателя постоянного тока
- Торможение двигателей постоянного тока
- Рабочие характеристики двигателя постоянного тока
- Лекция 29 основы электропривода Электропривод и его классификация
- Механические характеристики производственных механизмов и эд
- Нагревание и охлаждение двигателя
- Лекция 30 выбор электродвигателя
- Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- Расчет мощности двигателя
- Лекция 32 управление электроприводом
- Основы электроснабжения
- Категории электроприемников и их электроснабжение
- Содержание и порядок разработки проекта системы электроснабжения
- Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- Коэффициенты спроса и мощности основных электроустановок
- Средневзвешенный коэффициент мощности и мощность компенсатора
- Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- Понятия об учете и нормировании электроэнергии Учет электрической энергии
- Системы оплаты электрической энергии
- Общезаводские нормы расхода электроэнергии (фрагмент)
- Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- Суммарные нагрузки на птп
- Алгоритм исследования
- Расчетные нагрузки на трансформатор птп
- Выводы и обобщения
- Литература