61. Контраст изображения
Проблема использования стандартного определения понятия контраста ДК связана со спецификой изменения интенсивности: она с одной стороны асимптотически затухает с большой скоростью, причем для разных направлений скорость затухания может отличаться, а с другой стороны изменяется и сам вид ДК. Для характеристики качества ДК необходимо уменьшить количество ее информационных параметров. И, в первую очередь, нужно устранить параметр ДК, связанный со скоростью затухания, что позволит представить ее в более регулярном виде, упростить процесс регистрации и дальнейшего преобразования. Наиболее оптимальными вариантами уменьшения диапазона интенсивностей в ДК являются различные способы оптической пространственной фильтрации. Наиболее часто закон пропускания фильтра выбирается из условия выравнивания распределения интенсивности в пределах всего регистрируемого спектра. В результате этой операции распределение интенсивности в ДК за фильтром приобретает синусоидальный вид. Распределение интенсивности в сечении выровненной ДК можно представить в следующем виде
Синусоидальное распределение интенсивности вызывает «перераспределение» энергии в спектре сигнала. Фурье-спектр выровненной ДК имеет две ярко выраженные линии, соответствующие нулевой пространственной частоте и основному периоду выровненной ДК
Спектр выровненного распределения интенсивности уже является интегральной характеристикой сечения ДК и существенно не зависит от числа регистрируемых дифракционных лепестков.
Типовые объекты дифракции, как показано выше, имеют Фурье-спектр, который условно можно представить в виде произведения гармонической функции на функцию, определяющую затухание спектра. Преобразование распределения интенсивности невозмущенной ДК (выравнивание) приводит ее к виду аналогичному распределению интенсивности при интерференции двух плоских волн.
Эту аналогию можно было бы использовать для оценки контраста.
Но, в силу того, что влияние возмущений облучающего поля и вида объекта различным образом сказываются на амплитуде дифракционных порядков, непосредственно использовать выровненный спектр в соответствии с формулой контраста
представляется затруднительным.
В силу специфики образования ДК в ней, в отличие от случая двухлучевой интерференции, нельзя рассматривать контраст по полю и в точке, а можно использовать только интегральную оценку качества ДК. В качестве такой оценки можно использовать амплитуды частот Фурье-спектра выровненной ДК. Фурье-спектр выровненной ДК имеет линейчатую структуру. В нем можно выделить нулевую гармонику и гармонику, соответствующую основному пространственному периоду ДК.
Для оценки величины контраста воспользуемся отношением амплитуд гармоник. Для невозмущенной выровненной ДК, имеющей вид гармонической составляющей умноженной на прямоугольный импульс, амплитуда нулевой гармоники Фурье-спектра в два раза превосходит амплитуду гармоники, соответствующую основному пространственному периоду. Для сохранения общепринятого диапазона изменения величины контраста в интерференционной картине введем множитель, равный двум. Тогда величина контраста будет равна
, где I0 и I1, соответственно амплитуды модуля Фурье-спектра нулевой и основной гармоник Фурье-спектра выровненной ДК (см. рис. 4.1).
Сопоставим величину контраста, получаемую по предлагаемому способу и контраст интерференционной картины в интерферометре Юнга. В интерферометре Юнга степень когерентности поля излучения оценивают по контрасту интерференционной картины, который, как правило, определяют в точке поля. Если интенсивности интерферирующих пучков равны, то степень когерентности поля излучения равна контрасту интерференционной картины (рис. 4.2). Распределение интенсивности при дифракции частично когерентного излучения на двух круглых отверстиях радиуса a
,
где угловой размер источника излучения, d – расстояние между отверстиями, β12 = argμ12, μ12 – степень когерентности.
Преобразовав распределение интенсивности, получим:
Выполним Фурье-преобразование выровненного распределения интенсивности
и найдем отношение амплитуд гармоник модулей Фурье-спектра.
Рассчитываемая таким способом величина контраста дифракционной картины зависит от числа анализируемых дифракционных порядков, число которых обычно определяется исходя из решаемой задачи.
При числе анализируемых дифракционных порядков 10 и более величина контраста, рассчитанная двумя способами, практически совпадает. С уменьшением числа анализируемых порядков рассчитываемая величина контраста незначительно уменьшается.
Величина контраста, рассчитанная двумя способами для пяти дифракционных порядков, отличается на 0.02÷0.03 единицы (Таблица 4.1) (рис. 4.3). При уменьшении степени когерентности эти различия незначительно увеличиваются. На практике, эта разница, как правило, лежит в пределах погрешности измерения.
Таким образом, преобразование распределения интенсивности ДК позволяет ввести понятие контраста ДК, как отношение амплитуд гармоник выровненного спектра. Численную величину контраста удобно использовать для количественной оценки качества ДК при наличии различного рода возмущений облучающего поля или при дисперсном характере объекта дифракции.
Yandex.RTB R-A-252273-3
- 1.Оптический сигнал и оптическая система
- 2.Интерференция в диффузном свете. Спекл-интерферометрия. Опыт Берча-Токарского
- 3.Оптика спеклов Основные свойства спекл-картины, условия формирования
- 4.Нормально развитая спекл-картина, условия ее наблюдения, контраст спекл-картины, индивидуальный спекл
- 8.Учет дискретности спектра подсвечивающего излучения и направления подсвета
- 9.Многомодовый режим излучения лазера.
- 10.Дифракция частично когерентного излучения на отверстии
- 11. Примеры. Основные свойства преобразования Фурье
- 14.Трансляционная симметрия дифракционной картины
- 17.Обобщенные функции. Свертка. Функция корреляции.
- 21.Распространение взаимной когерентности.
- 23.Пример: Дифракция частично когерентного излучения на щели . Пример: Дифракция частично когерентного излучения на щели
- 24.Фурье-образы наиболее часто встречающихся в оптике двумерных сигналов и их свойства
- 25.Типы оптических систем
- 26.Единство и различие явлений дифракция и интерференция
- 27.Временная когерентность излучения лазера
- 28.Пространственная фильтрация
- 29.Оптический сигнал и его преобразование
- 30.Оптика винтовых полей или сингулярная оптика
- 31.Наиболее часто встречающиеся в оптике специальные функции в связи с применением теории систем и преобразований
- 33.Представление поля в дальней зоне через интеграл Фурье
- 36.Когерентность лазерного излучения
- 37.Оптические системы, операторы, функционалы.
- 38.Основные свойства преобразования Фурье
- 39.Принцип неопределенности в теории оптического сигнала
- 40.Предельная пространственная когерентность излучения одномодового лазера
- 41.Ограничение разрешающей способности оптической системы и информационной емкости оптических сигналов
- 42.Когерентное поле, некогерентное поле
- 43.Квантовая природа электромагнитного излучения
- 44.Контраст дифракционной картины
- 45. Свойства симметрии дифракционной картины
- 46.Квантовая природа электромагнитного излучения.
- 47.Корреляционные функции и когерентность излучения
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 49.Квантовомеханическая модель дифракции монохроматического излучения на щели
- 50.Геометрическая теория дифракции
- 51.Принцип Бабине
- 52.Световое давление
- 53.Определение преобразования Фурье
- 54.Статистические характеристики когерентных изображений.
- 55.Двумерные функции
- 56.Основные свойства спекл-картины, условия формирования
- 57.Теория когерентных изображений
- 58.Способы устранения спекл-структуры
- 59.Понятие обобщенных функций. Свойства. Операции
- 60.Понятие спекл, объективной и субъективной спекл-картины.
- 61. Контраст изображения